• Title/Summary/Keyword: Crystalline 3C-SiC

Search Result 328, Processing Time 0.027 seconds

Epitaxial Growth of $Y_2O_3$ films by Ion Beam Assisted Deposition

  • Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.26-26
    • /
    • 2000
  • High quality epitaxial Y2O3 thin films were prepared on Si(111) and (001) substaretes by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y2O3 at the initial growth stage, it could be suppressed by the interface SiO2 layer. Therefore, SiO2 layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y2O3 , and the high quality epitaxial film could be grown successfully. Electrical properties of Y2O3 films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8$\times$10-8C/$\textrm{cm}^2$ and the breakdown field strength was about 10MV/cm.

  • PDF

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications (태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구)

  • 유진수;임동건;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF

Design and Analysis of GAIVAE System and Application to the Growth of Semiconductor Thin Films -On the Growth of GaAs on Si-

  • Kang, Ey-Goo;Sung, Man-Young;Park, Sung-Hee
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.110-116
    • /
    • 1998
  • A single-crystalline epitaxial film of GaAs has been grown on Si using a gs assisted-ionized vapour beam eptaxial technique. The native oxide layer on the silicon substrate was removed at 550$^{\circ}C$ by use of an accelerated arsenic ion beam, instead of a high-temperature desorption. During the growth the substrate temperature was maintained at 550$^{\circ}C$. Transmission electron microscopy and electron diffraction data suggest that the GaAs layer is an epitaxially grown single-crystalline layer. The possibility of growing device quality GaAs on Si is able demonstrated through fabrication of GaAs MODFET on Si substrates.

  • PDF

CMnAl TRIP Steel Surface Modification During CGL Processing

  • Gong, Y.F.;Lee, Y.R.;Kim,, Han-S.;Cooman, B.C.De
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2010
  • The mechanisms of selective oxidation of intercritically annealed CMnAl TRIP steels in a Continuous Galvanizing Line (GCL) were studied by cross-sectional observation of the surface and sub-surface regions by means of High Resolution Transmission Electron Microscopy (HR-TEM). The selective oxidation and nitriding of an intercritically annealed CMnAl TRIP steel in a controlled dew point 10%$H_2+N_2$ atmosphere resulted in the formation of c-xMnO.$MnO_2$ (1${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) particles on the steel surface. Single crystal c-xMnO.$SiO_2$ ($2{\leq}x{\leq}4$) oxide particles were also observed on the surface. A thin film of crystalline c-xMnO.$SiO_2$ (2${\leq}$x<3) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) was present between these particles. In the sub-surface region, internal oxidation, nitriding and intermetallic compound formation were observed. In the first region, large crystalline c-xMnO.$SiO_2$ ($1{\geq}x{\geq}2$) and c-xMnO.$Al_2O_3$ ($x{\geq}1$) oxides particles were present. In the second region, c-AlN particles were observed, and in a third region, small $MnAl_x$ (x>1) intermetallic compound particles were observed.

Co-firing Optimization of Crystalline Silicon Solar Cell Using Rapid Thermal Process (급속 열처리 공정을 이용한 결정질 실리콘 태양전지의 전극 소결 최적화)

  • Oh, Byoung-Jin;Yeo, In-Hwan;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.236-240
    • /
    • 2012
  • Limiting thermal exposure time using rapid thermal processing(RTP) has emerged as promising simplified process for manufacturing of solar cell in a continuous way. This paper reports the simplification of co-firing using RTP. Actual temperature profile for co-firing after screen printing is a key issue for high-quality metal-semiconductor contact. The plateau time during the firing process were varied at $450^{\circ}C$ for 10~16 sec. Glass frit in Ag paste etch anti-reflection layer with plateau time. Glass frit in Ag paste is important for the Ag/Si contact formation and performances of crystalline Si solar cell. We achieved 17.14% efficiency with optimum conditions.

A Study on the Crystallization of Grain-Boundary Phases in Si3N4-Y2O3-Al2O3 System (Si3N4-Y2O3-Al2O3계의 입계상 결정화에 관한 연구)

  • 박정현;황종희
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 1989
  • After sintering Si3N4 containing 20wt% of variable composition ratio of Y2O3 and Al2O3 at 1$600^{\circ}C$, the specimens were annealed at 125$0^{\circ}C$ and 135$0^{\circ}C$ for 5, 10, 15 hours in order to crystallize the remanining oxynitride glass phases. The main grain-boundary crystalline phases in the Si3N4-Y2O3-Al2O3 system were melilite and YAG. By annealing 15hrs. at 125$0^{\circ}C$, almost all of the glasses were crystallized. During the growth of melilite, lattice volyume of $\beta$-Si3N4 was increased as Al3+ and O2- ions in the oxynitride glass diffuse into $\beta$-Si3N4 lattice, but during the growth of YAG, lattice volume of $\beta$-Si3N4 was decreased by reverse diffusion of Al3+ and O2- ions. In case of crystallization of glass phase to melilite, thermal expansion of sample was decreased, but in case of crystallization to YAG, inverse phenomen on was observed.

  • PDF

Thin Film Amorphous/Bulk Crystalline Silicon Tandem Solar Cells with Doped nc-Si:H Tunneling Junction Layers

  • Lee, Seon-Hwa;Lee, Jun-Sin;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.257.2-257.2
    • /
    • 2015
  • In this paper, we report on the 10.33% efficient thin film/bulk tandem solar cells with the top cell made of amorphous silicon thin film and p-type bulk crystalline silicon bottom cell. The tunneling junction layers were used the doped nanocrystalline Si layers. It has to allow an ohmic and low resistive connection. For player and n-layer, crystalline volume fraction is ~86%, ~88% and dark conductivity is $3.28{\times}10-2S/cm$, $3.03{\times}10-1S/cm$, respectively. Optimization of the tunneling junction results in fill factor of 66.16 % and open circuit voltage of 1.39 V. The open circuit voltage was closed to the sum of those of the sub-cells. This tandem structure could enable the effective development of a new concept of high-efficiency and low cost cells.

  • PDF

A study on the fabrication of poly crystalline Si wafer by vacuum casting method and the measurement of the efficiency of solar cell

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • Si-wafers for solar cells were cast in a size of $50{\times}46{\times}0.5{\textrm}{mm}^3$ by vacuum casting method. The graphite mold coated by BN powder, which was to prevent the reaction of carbon with the molten silicon, was used. Without coating, the wetting and reaction of Si melt to graphite mold was very severe. In the case of BN coating, SiC was formed in the shape of tiny islands at the surface of Si wafer by the reaction between Si-melt and carbon of the graphite mold on the high temperature. The grain size was about 1 mm. The efficiency of Si solar cell was lower than that of Si solar cell fabricated on commercial single and poly crystalline Si wafer. The reason of low efficiency was discussed.

Fabrication and Optical Characterization of Glass-ceramics for IR Reflector (적외선 반사체용 결정화유리 제조 및 광학적 특성평가)

  • 박규한;신동욱;변우봉
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1137-1143
    • /
    • 2001
  • In this study, glass-ceramics containing cordierite(2MgO$.$2Al$_2$O$_3$5SiO$_2$) as a major crystalline phase was prepared from MAS (MgO-Al$_2$O$_3$-SiO$_2$) glass system for the application to reflector. Glasses prepared with addition of TiO$_2$as a nucleating agent were crystallized by two-step heat treatment of nucleation and crystal growth. Then nucleation and crystal growth behavior were investigated and the influence of heat treatment schedule on the nature of crystal phases and the diffuse reflectance spectrum was investigated. As a result, cordierite and rutile were precipitated as a major crystalline phases for the glass-ceramics with the nucleation at 750$^{\circ}C$ for 3 hours and then crystallization at 1100$^{\circ}C$ for 5 hours, and this glass-ceramics showed the reflectance over 90% in 570∼2500nm specturm region.

  • PDF