• Title/Summary/Keyword: Crystal Size Distribution

Search Result 173, Processing Time 0.027 seconds

Effect of agitation on hydrothermal preparation of $\alpha$-$SiO_2$ powder (수열합성법에 의한 $\alpha$-$SiO_2$분말 제조시 교반의 영향)

  • 임진홍;서경원;목영일;이강인;유효신;이철경
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.191-196
    • /
    • 1999
  • Effects of agitation and heating rate on crystallinity, size distribution and mean size of $\alpha$-$SiO_2$powder prepared hydrothermally were investigated. $\alpha$-$SiO_2$crystalline powder, in mean particle size of 1~3.2 $\mu\textrm{m}$, was obtained at $350^{\circ}C$ using KOH as a mineralized for a 3 h reaction. Experimental results showed that particle size became smaller as the rate of agitation increased if it was introduced from the beginning of reaction, however, crystallinity was reduced at the low rate of agitation and it was became enhanced at above 150 r/min. Particle size became larger if agitation was introduced at any time during the reaction rather than introduced from the beginning of reaction. It was also found that particle size became smaller if heating rate was reduced, while the rate of agitation kept constant.

  • PDF

Effect of Mixed Grinding on Superconductivity YBaCu Composite Oxide

  • Ryu, Ho-Jin
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 1996
  • Effect of mixed grinding with a planetary ball mill of starting materials before heat treatment on the crystal structure and superconduction properties in the YBaCu composite oxide was studied. The size reduction of powders too place in the early stage of grinding, followed by aggregation of the resultant fine particles. The uniformity of the composition in the mixture was improved with grinding, which later decreased in the crystal grain size and well distribution of twin phase in the sintered bodies. The critical current density of the sintered bodies obtained from the mixture ground for 60 minutes showed the maximum value about 150 A/$\textrm{cm}^2$, while critical temperatures were around 90K and were independent of the grinding time.

  • PDF

Synthesis and Characteristics of Magnesium Hydroxide Group Flame Retardant for Polymer Addtives (고분자 첨가제인 난연제로서의 수산화마그네슘계 물질의 합성과 특성)

  • Lee, Dong-Kyu;Kang, Kuk-Hyoun;Lee, Jin-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Different types magnesium hydroxide groups have been obtained using the hydrothermal precipitation technique from magnesium sulfate and calcium carbonate solution. The Mg atom coordinated around O atom of ${SO_4}^{2-}$ in another layer to form a multi-layer structure crystal. The influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide groups precipitated in aqueous were investigated such as different of additive and pH. Magnesium hydroxide groups were decomposed gradually and converted finally to MgO particles after heated in air temperature up to $1050^{\circ}C$. The particle size and it's distribution morphology, crystal phase and thermal behavior of the samples were characterized through XRD, SEM, EDS, and TG/DTA.

Electric Property of $Bi_{0.4}Ti_3Sb_{1.6}$ Thermoelectric Material Prepared by Powder Metallurgy Process

  • Shin, Sung-Chul;Lee, Gil-Geun;Kim, Woo-Yeol;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.684-685
    • /
    • 2006
  • In the present study, the powder metallurgical fabrication of $Bi_{0.4}Te_3Sb_{1.6}$ thermoelectric materials has been studied with specific interest to control the microstructure by the mechanical grinding process. The $Bi_{0.4}Te_3Sb_{1.6}$ thermoelectric powders with a various particle size distribution were prepared by the combination of the mechanical milling and blending processes. The specific electric resistivity of the $Bi_{0.4}Te_3Sb_{1.6}$ sintered bodies mainly depended on the orientation of the crystal structure rather than the particle size of the raw powders.

  • PDF

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Numerical Study on the Air-Cushion Unit for Transportation of Large-Sized Glass Plate

  • Jun, Hyun-Joo;Kim, Kwang-Sun;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.59-64
    • /
    • 2007
  • Non-contact transportation of a large-sized glass plate using air cushion for the vertical sputtering system of liquid crystal display (LCD) panel was considered. The objective of the study was to design an air pad unit which was composed of multiple injection and exhaust holes and mass flow supplying pipe. The gas was injected through multiple small holes to maintain the force for levitating glass plate. After hitting the plate, the air was vented through exhaust holes. Complex flow field and resulting pressure distribution on the glass surface were numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

PHOTOSENSITIVITY OF HETEROJUNCTION TYPE GRAINS IN CUBIC SILVER HALIDE MICROCRYSTALS

  • Park, In Yeong
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.159-161
    • /
    • 1996
  • Photosensitivity of silver halide emulsion depends on the properties of the microcrystals. Size, shape, grain distribution and chemical composition as well as the inner structure or the topography of the latent image specks affect on the optical properties and play an important role in the photographic process. In the present paper, a study on the sensitization of emulsion containing AgBrClI core/shell grains showed that for the given size, shape, halide content and crystal habit, under the optimal conditions the photosensitivity of the heterojunction type grains are different from that of the common regular grains. The optimal photosensitivity was obtained at the iodide content of 2.0 mo1%.

  • PDF

Fabrication of High-Density Nickel Hydroxide Powder-I (고밀도 수산화니켈 분말의 제조에 관한 연구-I)

  • 신동엽;조원일;신치범;조병원;강탁;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 1995
  • To increase the capacity of positive electrode materials for matching the high capacity negative electrode materials in alkaline rechargeable batteries, high-density nickel hydroxide powders were made through a continuous process from nickel sulfate reacted with ammonia and sodium hydroxidc. The effect of operating conditions on structure, shape, size distribution, apparent density and tap density of powders were investigated. Crystal structure of nickel hydroxide powder was hcp according to Bravais Lattice. The increase of mean residence time promoted the growth of (101) plane. The shape of powder was nearly spherical. Their size was in the range of $2~50\mu\textrm{m}$. The size distribution of the powders prepared was narrower than that of commercially obtained nickel hydroxide. Apparent density and tap density were 1.6~1.7g/cc and 2.0~2.1g/cc, respectively.

  • PDF

A Study on Property Distribution of [011] Poled Mn:PIN-PMN-PT Single Crystals Grown by Bridgeman Method (Bridgeman 성장 [011] 분극 Mn:PIN-PMN-PT 압전단결정의 물성 분포 연구)

  • Soohyun Lim;Yub Je;Yohan Cho;Sang-Goo Lee;Hee-Seon Seo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.412-419
    • /
    • 2024
  • Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals, which exhibit improved phase transition temperatures and coercive field properties compared to Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (PIN-PMN-PT) single crystals, are expected to be utilized in high-power acoustic transducers. Bridgeman method, growing single crystals along the axial direction from melt, is most widely used method for single crystal growth with large size and high quality. However, single crystal boules grown by the Bridgeman method demonstrate a PT compositional variation, giving rise a distribution of crystal structure and material properties along the growing axis. To employ piezoelectric single crystals grown by the Bridgeman method for acoustic transducers, it is essential to investigate their overall property distribution. In this study, the compositional distribution and property variation of Mn:PIN-PMN-PT single crystals grown by the Bridgeman method was investigated. Measured compositional distribution of PT was from 29% to 32.5% in the Rhombohedral crystal region of the boule. Two types of specimen, [011]-poled Mn:PIN-PMN-29PT and Mn:PIN-PMN-32PT single crystals, were fabricated and tested to obtain full property variation at both ends of the Rhombohedral crystal region. The properties related to the 32 directional vibration mode and the properties related to high-power driving were measured to confirm the overall distribution of properties by composition.

Preparation of Porous Glass-Ceramics by the Sintering (소결법에 의한 다공질 결정화유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1218-1230
    • /
    • 1994
  • In manufacturing process of porous glass-ceramics by the filler method, the sintering behaviour of crystallizable glass powder mixed with various salts was studied and also the effects of precipitated crystal phases on the properties of porous glass-ceramics were investigated. Fine-grained crystallizable glass powder was homogeneously mixed with various slat having grain size 100~200 ${\mu}{\textrm}{m}$ and sintered for densification. After washing out the inorganic salt with distilled water, the porous sintered body was heat treated additionly for crystallization. The MgO-Al2O3-SiO2 base glass was used as crystallizable glass powder and the water soluble salts such as K2SO4 and MgSO4 were used as filler. When K2SO4 was used, leucite crystal phase was formed as a result of the ion exchange and porous glass-ceramics which exhibit high temperature resistance and high thermal expansion coefficient of 17$\times$10-6/$^{\circ}C$ could be obtained. On the contrary, when MgSO4 was used, only slight ion exchange is observed and $\mu$-cordierite and $\alpha$-cordierite crystal phases were formed and porous glass-ceramics which exhibit low thermal expansion coefficient schedule were determined with the results of DTA curves, thermal shrinkage curves and XRD patterns analysis. From DTA curves and thermal shrinkage curves, it was found that the sintering densification have been completed at the temperature range of exothermic peak for crystallization. The pore size distributions and pore diameters were measured by mercury porosimeter. The pore diameter of porous glass-ceramics was 10~15 ${\mu}{\textrm}{m}$ when 100~200${\mu}{\textrm}{m}$ grain size of K2SO4 was used and it was 25~30 ${\mu}{\textrm}{m}$ when the same grain size of MgSO4 was used. The porous glass-ceramics K2SO4 used shows bimodal pore size distribution and its porous skeleton structure was ascertained by SEM observation.

  • PDF