• Title/Summary/Keyword: Cryptographic Technology

Search Result 213, Processing Time 0.021 seconds

The Considerable Security Issues on the Security Enforcement of Cryptographic Technology in Finance Fields (금융부문 암호기술의 안전성 강화를 위한 보안고려사항)

  • Kim, Young-Tae;Lee, Su-Mi;Noh, Bong-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.137-142
    • /
    • 2009
  • By known attacks against cryptographic technology and decline of security, internal and external major institutions have defined their recommendations in kinds, expiration, safe parameters of cryptographic technology and so on. Internal financial fields will change some cryptographic technology to follow these recommendations. To keep strong security of financial systems against sudden security changes of cryptographic technology, this article finds pre-steps : status of applied cryptographic technology, selection of vulnerable cryptographic technology. And plans for management of cryptographic technology in financial fields will be proposed.

Addressing Emerging Threats: An Analysis of AI Adversarial Attacks and Security Implications

  • HoonJae Lee;ByungGook Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.69-79
    • /
    • 2024
  • AI technology is a central focus of the 4th Industrial Revolution. However, compared to some existing non-artificial intelligence technologies, new AI adversarial attacks have become possible in learning data management, input data management, and other areas. These attacks, which exploit weaknesses in AI encryption technology, are not only emerging as social issues but are also expected to have a significant negative impact on existing IT and convergence industries. This paper examines various cases of AI adversarial attacks developed recently, categorizes them into five groups, and provides a foundational document for developing security guidelines to verify their safety. The findings of this study confirm AI adversarial attacks that can be applied to various types of cryptographic modules (such as hardware cryptographic modules, software cryptographic modules, firmware cryptographic modules, hybrid software cryptographic modules, hybrid firmware cryptographic modules, etc.) incorporating AI technology. The aim is to offer a foundational document for the development of standardized protocols, believed to play a crucial role in rejuvenating the information security industry in the future.

Modeling cryptographic algorithms validation and developing block ciphers with electronic code book for a control system at nuclear power plants

  • JunYoung Son;Taewoo Tak;Hahm Inhye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • Nuclear power plants have recognized the importance of nuclear cybersecurity. Based on regulatory guidelines and security-related standards issued by regulatory agencies around the world including IAEA, NRC, and KINAC, nuclear operating organizations and related systems manufacturing organizations, design companies, and regulatory agencies are considering methods to prepare for nuclear cybersecurity. Cryptographic algorithms have to be developed and applied in order to meet nuclear cybersecurity requirements. This paper presents methodologies for validating cryptographic algorithms that should be continuously applied at the critical control system of I&C in NPPs. Through the proposed schemes, validation programs are developed in the PLC, which is a critical system of a NPP's I&C, and the validation program is verified through simulation results. Since the development of a cryptographic algorithm validation program for critical digital systems of NPPs has not been carried out, the methodologies proposed in this paper could provide guidelines for Cryptographic Module Validation Modeling for Control Systems in NPPs. In particular, among several CMVP, specific testing techniques for ECB mode-based block ciphers are introduced with program codes and validation models.

A Study on the Policy of Cryptographic Module Verification Program (암호모듈 검증 정책에 관한 연구)

  • Choi, Myeong-Gil;Jeong, Jae-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.255-262
    • /
    • 2011
  • The advancement of information and communication technology has caused a few dysfunction such as hacking. To keep an organization from a harmful hacking, demands for cryptographic modules have been increased. However, the evaluation criteria of cryptographic modules in Korea have been less firmly established. It is difficult for the consumers of cryptographic module to choose an appropriate cryptographic module, and to establish interoperability between applications and cryptographic modules. This study analyzes evaluation criteria, evaluation processes and evaluation policy of CMVP(Cryptographic Module Verification Program) in the advanced countries. The paper suggests a policy for Korea CMVP, in resulting a provision of foundations for international standard and cooperations for international cryptographic policies and systems.

Criteria for Evaluating Cryptographic Algorithms, based on Statistical Testing of Randomness (AES(Advanced Encryption Standard) 평가에 대한 고찰)

  • 조용국;송정환;강성우
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.6
    • /
    • pp.67-76
    • /
    • 2001
  • In this paper, we investigate criteria for evaluating cryptographic strength based on randomness testing of the advanced encryption standard candidates, which have conducted by NIST(National Institute of Standards & Technology). It is difficult to prove that a given cryptographic algorithm meets sufficient conditions or requirements for provable security. The statistical testing of random number generators is one of methods to evaluate cryptographic strength and is based on statistical properties of random number generators. We apply randomness testing on several cryptographic algorithms that have not been tested by NIST and find criteria for evaluating cryptographic strength from the results of randomness testing. We investigate two criteria, one is the number of rejected samples and the other is the p-value from p-values of the samples.

PRaCto: Pseudo Random bit generator for Cryptographic application

  • Raza, Saiyma Fatima;Satpute, Vishal R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6161-6176
    • /
    • 2018
  • Pseudorandom numbers are useful in cryptographic operations for using as nonce, initial vector, secret key, etc. Security of the cryptosystem relies on the secret key parameters, so a good pseudorandom number is needed. In this paper, we have proposed a new approach for generation of pseudorandom number. This method uses the three dimensional combinational puzzle Rubik Cube for generation of random numbers. The number of possible combinations of the cube approximates to 43 quintillion. The large possible combination of the cube increases the complexity of brute force attack on the generator. The generator uses cryptographic hash function. Chaotic map is being employed for increasing random behavior. The pseudorandom sequence generated can be used for cryptographic applications. The generated sequences are tested for randomness using NIST Statistical Test Suite and other testing methods. The result of the tests and analysis proves that the generated sequences are random.

Design of Fast Elliptic Curve Crypto module for Mobile Hand Communication

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.177-181
    • /
    • 2008
  • The more improved the Internet and the information technology, the stronger cryptographic system is required which can satisfy the information security on the platform of personal hand-held devices or smart card system. This paper introduces a case study of designing an elliptic curve cryptographic processor of a high performance that can be suitably used in a wireless communicating device or in an embedded system. To design an efficient cryptographic system, we first analyzed the operation hierarchy of the elliptic curve cryptographic system and then implemented the system by adopting a serial cell multiplier and modified Euclid divider. Simulation result shows that the system was correctly designed and it can compute thousands of operations per a second. The operating frequency used in simulation is about 66MHz and gate counts are approximately 229,284.

VLSI Design of AES Cryptographic Processor (AES 암호 프로세서의 VLSI 설계)

  • 정진욱;최병윤;서정욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper a design of cryptographic coprocessor which implements AES Rijndael algorithm is described. To achieve average throughput of 1 round per 5 clocks, subround pipelined scheme is applied. To apply the coprocessor to various applications, three key sizes such as 128, 192, 256 bits are supported. The cryptographic coprocessor is designed using 0.25${\mu}{\textrm}{m}$ CMOS technology and consists of about 36, 000 gates. Its peak performance is about 512 Mbps encryption or decryption rate under 200 Mhz clock frequency and 128-bit key ECB mode(AES-128ECB).

  • PDF

The cryptographic module design requirements of Flight Termination System for secure cryptogram delivery (안전한 보안명령 전달을 위한 비행종단시스템용 암호화 장치 설계 요구사항)

  • Hwang, Soosul;Kim, Myunghwan;Jung, Haeseung;Oh, Changyul;Ma, Keunsu
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.114-120
    • /
    • 2015
  • In this paper, we show the design requirements of the cryptographic module and its security algorithm designed to prevent the exposure of the command signal applied to Flight Termination System. The cryptographic module consists of two separate devices that are Command Insertion Device and Command Generation Device. The cryptographic module designed to meet the 3 principles(Confidentiality, Integrity and Availability) for the information security. AES-256 block encryption algorithm and SHA-256 Hash function were applied to the encrypted symmetric key encryption method. The proposed cryptographic module is expected to contribute to the security and reliability of the Flight Termination System for Space Launch Vehicle.

Key Recovery Technology for Enterprise Information Infrastructure(EII) (기업 정보체계의 키 복구 기술)

  • 임신영;강상승;하영국;함호상;박상봉
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.3
    • /
    • pp.159-178
    • /
    • 1999
  • As Electronic Commerce is getting larger, the volume of Internet-based commerce by enterprise is also getting larger. This phenomenon applies to Internet EDI, Global Internet Business, and CALS information services. In this paper, a new type of cryptographic key recovery mechanism satisfying requirements of business environment is proposed. It is also applied to enterprise information infrastructure for managing employees' task related to handling official properties of electronic enterprise documents exchange. This technology needs to be complied to information management policy of a certain enterprise environment because behavior of cryptographic key recovery can cause interruption of the employees' privacy. However, the cryptographic key recovery mechanism is able to applied to any kind of information service, the application areas of key recovery technology must be seriously considered as not disturbing user's privacy It will depend on the policy of enterprise information management of a specific company.

  • PDF