• 제목/요약/키워드: Cryptocurrency Investment Strategy

검색결과 6건 처리시간 0.018초

딥러닝과 단기매매전략을 결합한 암호화폐 투자 방법론 실증 연구 (An Empirical Study on the Cryptocurrency Investment Methodology Combining Deep Learning and Short-term Trading Strategies)

  • 이유민;이민혁
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.377-396
    • /
    • 2023
  • 암호화폐시장이 지속해서 성장함에 따라 하나의 새로운 금융시장으로 발전하였다. 이러한 암호화폐시장에 관한 투자전략 연구의 필요성 또한 대두되고 있다. 본 연구에서는 단기매매전략과 딥러닝을 결합한 암호화폐 투자 방법론에 대해 실증분석을 진행하였다. 투자 대상의 암호화폐를 이더리움으로 설정하고, 과거 데이터를 기반으로 최적의 파라미터를 찾아 이를 활용하여 실험 모델의 투자 성과를 분석하였다. 실험 모델은 변동성돌파전략, LSTM(Long Short Term Memory)모델, 이동평균 교차 전략, 그리고 단일 모델들을 결합한 결합 모델이다. 변동성돌파전략은 일 단위로 변동성이 크게 상승할 때 매수하고 당일 종가에 매도하는 단기매매전략이며, LSTM모델은 시계열 데이터에 적합한 딥러닝 모델인 LSTM을 활용하여 얻은 예측 종가를 이용한 매매방법이다. 이동평균 교차 전략은 단기 이동평균선이 교차할 때 매매를 결정하는 방법이다. 결합 모델은 변동성돌파전략의 매수 조건과 변동성돌파전략의 목표 매수가보다 LSTM의 예측 종가가 큰 경우 매수하는 조건이 동시에 만족하면 매수하는 규칙이다. 결합 모델은 변동성돌파전략과 LSTM모델의 파생 변수를 활용해 매수 조건에 AND와 OR를 사용하여 만든 매매 규칙이다. 실험 결과, 단일 모델보다 결합 모델에서 투자 성과가 우수함을 확인하였다. 특히, 데일리 트레이딩과 매수 후 보유의 누적수익률은 -50%이하인 것에 비해 결합 모델은 +11.35%의 높은 누적수익률을 달성하여 하락이 지속되던 투자 기간에도 기술적으로 방어하며 수익을 낼 수 있음을 확인하였다. 본 연구는 기존의 딥러닝기반 암호화폐 가격 예측에서 나아가 변동성이 큰 암호화폐시장에서 딥러닝과 단기매매전략을 결합하여 투자 성과를 개선하였다는 점에서 학술적 의의가 있으며, 실제 투자 시 적용 가능성을 보여주었다는 점에서 실무적 의의가 있다.

시계열 예측 모델을 활용한 암호화폐 투자 전략 개발 (Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

딥러닝을 이용한 비트코인 투자전략의 성과 분석 (Performance Analysis of Bitcoin Investment Strategy using Deep Learning)

  • 김선웅
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.249-258
    • /
    • 2021
  • 최근 암호화폐거래소로 투자자들이 몰리면서 비트코인 가격이 급등락하고 있다. 본 연구의 목적은 딥러닝 모형을 이용하여 비트코인의 가격을 예측하고, 투자전략을 통해 비트코인의 수익성이 있는지를 분석하는 것이다. 비선형성과 장기기억 특성을 보이는 비트코인 가격 예측모형으로는 LSTM을 활용하며, 예측 가격을 입력변수로 하는 이동평균선 교차전략의 수익성을 분석하였다. 2013년부터 2021년까지의 LSTM 예측 가격을 이용한 비트코인 이동평균선 교차전략의 투자 성과는 단순 시장가격을 이용한 이동평균선 교차전략과 벤치마크전략 Buy & Hold 보다 각각 5.5%와 46% 이상의 수익률 개선 효과를 보여주었다. 최근 데이터까지 확장하여 분석한 본 연구의 결과는 기존의 연구들과 마찬가지로 암호화폐 시장의 비효율성(inefficiency)을 지지하고 있으며, 비트코인 투자자들에게는 딥러닝 모형을 이용한 투자전략의 실전 활용 가능성을 보여주었다. 향후 연구에서는 다양한 딥러닝 모형들의 성과 비교를 통해 최적의 예측모형을 개발하고 비트코인 투자전략의 수익성을 개선할 필요가 있다.

리스크를 고려한 블록체인 검증자 보상 포트폴리오 최적화 (Optimization Blockchain Validator Reward Portfolio to Account for Risk)

  • 김근호;이중희;최승호;김범중;전기석
    • 한국IT서비스학회지
    • /
    • 제23권4호
    • /
    • pp.71-83
    • /
    • 2024
  • This paper explores the viability of investment opportunities through earning rewards as validators in blockchain networks, moving beyond traditional approaches to cryptocurrency investment. Recently, there has been growing interest in participating as blockchain validators to receive stable rewards, rather than merely purchasing and holding cryptocurrencies. This shift reflects a perception among investors that participating in blockchain validation is a safer investment method. Despite this, most investment decisions still focus primarily on the volatility of cryptocurrency prices, with investment strategies considering validator reward rates being relatively underexplored. This study selects five major cryptocurrencies based on the Proof of Stake (PoS) mechanism (Ethereum, Cosmos, BNB, Polkadot, Polygon) and compares the validator reward rates from the fourth quarter of 2022 to the fourth quarter of 2023. The selected cryptocurrencies were chosen based on their market capitalization, validator reward rates, and the number of wallets staked, representing popular and trustworthy options. Through this analysis, the research applies Modern Portfolio Theory (MPT) by Harry Markowitz to propose a method of portfolio composition that maintains an optimal balance between risk and return. This is expected to contribute to investors making more stable and sustainable investment decisions based on the fundamental value and long-term growth potential of blockchain technology. Additionally, this study is anticipated to provide significant insights into academic discussions related to cryptocurrency investments, deepen understanding of the cryptocurrency market, and enhance the efficiency of investment strategies.

암호화폐 거래자 사이에 형성되는 정보 비대칭 현상에 관한 연구 (A Study on the Information Asymmetry among Cryptocurrency Traders)

  • 박민정;채상미
    • Journal of Information Technology Applications and Management
    • /
    • 제26권3호
    • /
    • pp.29-41
    • /
    • 2019
  • As users' interests of cryptocurrency has been increased, investment volume of it also increases. In the cryptocurrency market, it cannot always be distributed homogenous information to all investors, similar to the stock market because it reflects the characteristics of a market microstructure. Cryptocurrency traders, thus, like stock investors, can experience the information asymmetry in the market and cannot but help to depend on private information. The purpose of this study is to estimate the trading intensity of informed traders and uninformed traders among cryptocurrency investors around the world based on PIN (Probability of Informed Trading). We have an aim to compare the difference of information asymmetry according to the ten types of cryptocurrency. The results of this study are expected to prevent the continuous increase of suspicious transactions related to cryptocurrency and contribute to the development of a sound cryptocurrency market.

A3C를 활용한 블록체인 기반 금융 자산 포트폴리오 관리 (Blockchain Based Financial Portfolio Management Using A3C)

  • 김주봉;허주성;임현교;권도형;한연희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권1호
    • /
    • pp.17-28
    • /
    • 2019
  • 금융투자 관리 전략 중에서 여러 금융 상품을 선택하고 조합하여 분산 투자하는 것을 포트폴리오 관리 이론이라 부른다. 최근, 블록체인 기반 금융 자산, 즉 암호화폐들이 몇몇 유명 거래소에 상장되어 거래가 되고 있으며, 암호화폐 투자자들이 암호화폐에 대한 투자 수익을 안정적으로 올리기 위하여 효율적인 포트폴리오 관리 방안이 요구되고 있다. 한편 딥러닝이 여러 분야에서 괄목할만한 성과를 보이면서 심층 강화학습 알고리즘을 포트폴리오 관리에 적용하는 연구가 시작되었다. 본 논문은 기존에 발표된 심층강화학습 기반 금융 포트폴리오 투자 전략을 바탕으로 대표적인 비동기 심층 강화학습 알고리즘인 Asynchronous Advantage Actor-Critic (A3C)를 적용한 효율적인 금융 포트폴리오 투자 관리 기법을 제안한다. 또한, A3C를 포트폴리오 투자 관리에 접목시키는 과정에서 기존의 Cross-Entropy 함수를 그대로 적용할 수 없기 때문에 포트폴리오 투자 방식에 적합하게 기존의 Cross-Entropy를 변형하여 그 해법을 제시한다. 마지막으로 기존에 발표된 강화학습 기반 암호화폐 포트폴리오 투자 알고리즘과의 비교평가를 수행하여, 본 논문에서 제시하는 Deterministic Policy Gradient based A3C 모델의 성능이 우수하다는 것을 입증하였다.