• 제목/요약/키워드: Cryogenic Liquid

검색결과 415건 처리시간 0.023초

극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구 (A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature)

  • 홍중식;김명곤;김천곤;공철원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

터보펌프용 극저을 베어링/실 성능시험설비 (Cryogenic Bearing and Seal Test Facility for a Turbopump)

  • 곽현덕;전성민;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.341-347
    • /
    • 2005
  • To perform a cryogenic development test for Tribo-elements in a turbopump, a cryogenic bearing and seal test facility (BSTF) is designed and currently under construction in KARI. The working fluid is liquid nitrogen operating at a temperature $-197^{\circ}C$. The maximum operating pressure and volume flow rate of BSTF are 100 bar and 10 liters per second, respectively. The development tests of floating ring seals, inter-propellant seals (IPS) and cryogenic ball bearings in a turbopump will be performed using the BSTF. This paper briefly described design requirements and procedures of BSTF.

  • PDF

Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험 (Experimental Study on Cryogenic Propellant Circulation using Gas-lift)

  • 권오성;이중엽;정용갑
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

공구와 칩 사이에서의 Liquid Nitrogen의 마찰 효과 (Friction on the Tool-chip Interface Under Liquid Nitrogen Cooling)

  • Jun Seong Chan
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.237-249
    • /
    • 2002
  • A cutting fluid can improve machining quality and tool life by maintaining the tool toughness and by providing a lubrication effect to reduce the friction between the chip and tool interface. Although liquid nitrogen as an environmentally safe coolant has been widely recognized in cryogenic machining, its function as a lubricant is plausible due to its chemical inertness, physical volatility and low viscosity. Since a reduced friction is a direct witness of the lubrication effect from a tribological viewpoint, this paper presents an evaluation of the apparent friction coefficient on the tool-chip interface in cryogenic cutting operations to prove and characterize the lubricity of LN2 in cryogenic machining. The mathematical approaches have been formulated to derive the normal and frictional forces on the tool-chip interface for the oblique cutting tests.

극저온 액체수소 기화기용 인쇄기판 열교환기의 동결 조건에 관한 실험적 연구 (Experimental Investigation on the Freezing Condition of Printed Circuit Heat Exchanger for Cryogenic Liquid Hydrogen Vaporizer)

  • 김우경;김보겸;손상호;이공훈;김정철
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.240-248
    • /
    • 2024
  • The purpose of this study is to investigate the freezing phenomena in printed circuit heat exchanger (PCHE) for cryogenic liquid hydrogen vaporizer. Local freezing phenomena in hot channels should be avoided in designing PCHE for cryogenic liquid hydrogen vaporizer. Hence, the flow and thermal characteristics of PCHE is experimentally investigated to figure out the conditions under when freezing occurs. To conduct lab-scale PCHE experiment, liquid nitrogen is used as a working fluid in cold channels instead of using liquid hydrogen. Glycol water is used as a working fluid in hot channels. Based on the experimental data, ratio between mass flow rates of cold channels and that of hot channels is proposed as contour map to avoid the freezing phenomena in PCHE.

극저온용 액중펌프 구조해석에 관한 연구 (A Study on the Structural Analysis of Cryogenic Submerged Pump)

  • 진도훈;이중섭
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.727-733
    • /
    • 2020
  • Recently, reciprocating cryogenic pumps are mainly developed for small-and-mid sized fuel supply systems. Centrifugal type pumps are not actively developed. Most cryogenic submerged pumps are imported. For transportation, cryogenic liquefied natural gas requires the liquid pump technology that can works in extreme evironments. In order to transport liquefied natural gas, it is necessary to apply pump technology. This is the fundamental research for developing the submerged pump technology applicable to the transportation and storage system equipment of cryogenic liquefied system. It tries to secure basic design materials through reverse-engineering in the cryogenic submerged pump development. Regarding materials, STS-304 and STS-431 which are stainless materials widely used in the cryogenic area are applied. Aluminum alloy is applied to impeller and upper manifolder and the pump rotates at the high speed of 6,000rpm.

액체질소에서의 극저온 절연매질의 Warm-up/Cool-down 특성 (Warm-up and Cool-down Characteristics of Cryogenic Insulation Materials in Liquid Nitrogen)

  • 이상화;신우주;;오석호;성재규;이방욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.119-119
    • /
    • 2010
  • Among the various factors influencing the service life of the electric equipment, the performance of dielectric insulation materials has an important role to determine their whole service life. In order to determine the degradation of insulating materials immersed in extremely low temperature media such as liquid nitrogen, the abrupt temperature change from cryogenic to normal room temperature should be considered. But the assessments of low-temperature aging test method for the dielectric materials immersed in liquid nitrogen considering these conditions were not fully reported. Therefore, for the fundamental step to establish the suitable degradation test methods for cryogenic dielectric materials, we focused on the evaluation of ageing test methods for dielectric materials exposed to low temperature environments considering thermal shock by cool-down and warm up test.

  • PDF

가공용 알루미늄 합금의 극저온 특성 (An Extremely Low Temperature Properties of Wrought Aluminum Alloys)

  • 정찬회;김순국;이준희;이해우;장창우
    • 한국재료학회지
    • /
    • 제17권4호
    • /
    • pp.192-197
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen on the behavior of aluminum alloys used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing immersion time in the liquid nitrogen, the elongation of AI 5083 alloy at cryogenic temperature decreased because of non-uniform fracture of precipitates on the grain boundary, and the serration also occurred because of discontinuous slip due to rapid decreasing of the specific heat. The mechanical properties of AI 6061 alloy at cryogenic temperature were characterized by uniformed yield strength, tensile strength and elongation regardless of the immersion time in the liquid nitrogen. These mechanical properties of aluminum alloys at cryogenic temperature were interpreted by the strength of grain boundary and the slip deformation behavior.

초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작 (Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE)

  • 김도헌;박영일;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.61-65
    • /
    • 2010
  • 초저온 추진제를 사용하는 액체로켓용 인젝터의 개발을 위해서는 단일 인젝터의 수류/연소시험을 통해 인젝터의 수력학적 특성 및 혼합, 미립화 등의 분무특성에 대한 연구가 필수적이다. 본 연구에서는 대학실험실 급에서 운용할 수 있는 범위의 가압식 초저온 추진제 공급장치 및 LabVIEW를 이용한 Cyclogram 제어 및 데이터 수집장치 등을 구축하였다. 제작된 시험장치를 이용하여 스월-동축인젝터의 $LN_2-GN_2$ 초저온 수류시험 및 분무 가시화를 수행하였다. 또한 LOX-$GCH_4$ 추진제 조합의 연소시험을 위한 연소기와 추력대를 설계 및 제작하였다.

  • PDF

Evaluation of cryogenic tensile properties of composite materials fabricated by fused deposition modeling 3D printer

  • Kang, Singil;Cha, Hojun;Ryu, Seungcheol;Kim, Kiwhan;Jeon, Seungmin;Lee, Jaesun;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.8-12
    • /
    • 2022
  • Recently, research on applying composite materials to various industrial fields is being actively conducted. In particular, composite materials fabricated by Fused Deposition Modeling 3D printers have more advantages than existing materials as they have fewer restrictions on manufacturing shape, reduce the time required, weight. With these advantages, it is possible to consider utilizing composite materials in cryogenic environments such as the application of liquid oxygen and liquid hydrogen, which are mainly used in an aerospace and mobility. However, FDM composite materials are not verified in cryogenic environments less than 150K. This study evaluates the characteristics of composite materials such as tensile strength and strain using a UTM (Universal Testing Machine). The specimen is immersed in liquid nitrogen (77 K) to cool down during the test. The specimen is fabricated using 3D print, and can be manufactured by stacking reinforced fibers such as carbon fiber, fiber glass, and aramid fiber (Kevlar) with base material (Onyx). For the experimental method and specimen shape, international standards ASTM D638 and ASTM D3039 for tensile testing of composite materials were referenced.