• Title/Summary/Keyword: Cryogenic Gaseous Helium

Search Result 11, Processing Time 0.022 seconds

Electrical Breakdown and Flashover Characteristics of Gaseous Helium at Cryogenic Temperature (극저온 헬륨가스의 절연파괴 및 연면방전 특성)

  • Kwag, Dong-Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.38-42
    • /
    • 2012
  • Fixtures such as bushings in terminations of high temperature superconducting(HTS) power cable systems are subjected to high voltages, which have to transition from ambient to cryogenic temperatures. As such it is imperative to ensure the integrity of the dielectrics under all operating conditions, including thermal aspects brought about by the passage of current. Gaseous helium(GHe) at high pressure is regarded as a potential coolant for superconducting cables. The dielectric aspects of cryogenic helium gas are both complex and demanding. In this experimental study we looked at the interface between a smooth epoxy surface and high pressure helium gas in a homogeneous electric field. The alternating current(AC) flashover voltages of epoxy samples are presented. The results have been analyzed by using Weibull statistics. In addition to the behavior of the epoxy in gaseous helium as a function of pressure and temperature we also present data of the characteristics of the epoxy in mineral oil and in liquid nitrogen($LN_2$). The breakdown characteristics of a uniform field gap in gaseous helium as a function of pressure and temperature under AC, direct current(DC) and lightning impulse voltages are also given. Electric field calculations have been made for one of the experimental geometries in an attempt to explain some of the anomalies in the experimental results.

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

Heating Apparatus Development for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.363-367
    • /
    • 2009
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

  • PDF

Heating Apparatus Development and Tests for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발 및 시험)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

Subcooling of cryogenic liquid by diffusion-driven evaporation (확산동기 증발에 의한 극저온 액체 과냉각)

  • Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.72-82
    • /
    • 2007
  • This paper relates to reducing the temperature of a cryogenic liquid by contacting it with gas bubbles, which can be characterized by diffusion-driven evaporative cooling, The characteristic of diffusion-driven evaporative cooling is thoroughly examined by theoretical. analytical and experimental methods specifically for the case of helium injection into liquid oxygen. The results reveal that if the gaseous oxygen partial pressure in helium bubbles is lower than the liquid oxygen vapor pressure, cooling occurs autonomously due to diffusion mass transfer. The method of lowering the injected helium temperature turns out to be very effective for cooling purpose.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

Determination of The Cryogenic Propellant Parameters at Pressurization of The Propulsion System Tank by Bubbling (버블링을 이용한 추진기관 가압 시스템에서 극저온 추진제 변수의 결정)

  • Bershadskiy Vitaly A.;Jung, Young-Suk;Lim, Seok-Hee;Cho, Gyu-Sik;Cho, Kie-Joo;Kang, Sun-Il;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a calculation method of the thermodynamic parameters of cryogenic propellant is proposed when a cryogenic propellant tank is pressurized by gaseous helium(GHe) bubbling. Temperature of cryogenic propellant and mass of dissolved GHe into propellant were analyzed at the various operation of pressurization of tile liquid oxygen(LOX) and hydrogen($LH_2$) tank using helium bubbling. It was evaluated how the GHe bubbling influences to the thermodynamic parameters of LOX and $LH_2$ with results of the analysis. With the proposed calculation method, It will be able to confirm the feasibility of GHe bubbling as a pressurization system of cryogenic propellant tank and to optimize the pressurization system using GHe bubbling.

Heat Exchanger Design Analysis for Propellant Pressurizing System of Satellite Launch Vehicles (소형위성 발사체용 추진제 가압 열교환기 설계 해석)

  • Lee H. J.;Han S. Y.;Chung Y. G.;Cho N. K.;Kil G. S.;Kim Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 2004
  • A heated and expanded helium is used to pressurize liquid propellants in propellant tanks of propulsion system of liquid propellant launch vehicles. To produce a heated and expanded helium, an hot-gas heat exchanger is used by utilizing heat source from an exhausted gas, which was generated in a gas generator to operate turbine of turbo-pump and dumped out through an exhaust duct of engine. Both experimental and numerical approaches of hot-gas heat exchanger design were conducted in the present study. Experimentally, siliconites - electrical resistance types - were used to simulate the full heat condition instead of an exhausted gas. Cryogenic heat exchangers, which were immersed in a liquid nitrogen pool, were used to feed cryogenic gaseous helium in a hot-gas heat exchanger. Numerical simulation was made using commercially utilized solver - Fluent V.6.0 - to validate experimental results. Helically coiled stainless steel pipe and stainless steel exhausted duct were consisted of tetrahedron unstructured mesh. Helium was a working fluid Inside helical heat coil and regarded as an ideal gas. Realizable k-』 turbulent modeling was adopted to take turbulent mixing effects in consideration. Comparisons between experimental results and numerical solutions are Presented. It is observed that a resulted hot-gas heat exchanger design is reliable based on the comparison of both results.

New Cooling Techniques of High Tc Superconductor Systems (고온초전도 시스템의 새로운 냉각기술)

  • Chang, Ho-Myung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.7-11
    • /
    • 1999
  • The recent progress in new cooling techniques of the high Tc superconductor(HTS) systems is reported and discussed with some practical examples. At the beginning stage of the HTS development in research laboratories, liquid nitrogen(LN$_2$) is the standard medium for an effective cooling. The success of HTS in many different application areas, however, has required a variety of need in the cooling temperature and the cooling capacity with specific design restrictions. While the utilization of alternative liquid cryogens such as liquid neon (LNe) or liquid hydrogen (LH$_2$) has been tired in some of them, even solid cryogens such as solid nitrogen (SN$_2$) or solid hydrogen (SH$_2$) may be another option in special applications. The gaseous helium cooled by a cryogenic refrigerator has also been a good candidate in many cases. One of the best cooling methods for the HTS is the direct conduction-cooling by a closed-cycle refrigerator with no cryogen at all. The refrigeration may be based on Joul-Thomson, Brayton, Stirling, Gifford-McMahon, or pulse tube cycles. The pros and cons of the newly proposed cooling methods are described and some significant design issues are presented.

  • PDF