• Title/Summary/Keyword: Crustal Structure

Search Result 92, Processing Time 0.023 seconds

A Study on Dynamic Response Analysis of High Structure under Earthquake Load (지진하중을 받는 고층건물의 동적응답 해석에 관한 연구)

  • 배동명;신창혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

IMAGING THE UPPER CRUST OF THE KOREAN PENINSULA BY SURFACE WAVE TOMOGRAPHY (표면파 토모그래피를 이용한 한반도 상부지각의 이미지)

  • Cho, Kwang-Hyun;Herrmann, Robert B.;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.41-50
    • /
    • 2006
  • The crustal structure of Korean Peninsula have been investigated by analyzing group velocity dispersion data of surface wave. Cross.correlation of seismic background motions (Campillo and Paul, 2003; Shapiro et al., 2005) has been applied to estimate the short.period Rayleigh. and Love.wave group velocity dispersion characteristics of the region. Standard processing procedures were applied to the cross.correlation, except that signal whitening was used in place of one.bit sampling equalize power in signals from different times. Multiple.filter analysis was used to extract the group velocities from the estimate Green's functions, which were then use to image the spatially varying dispersion at periods between 0.5 and 20 seconds. The tomographic inversion technique used inverted all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

The Study of Hydrothermal Vent and Ocean Crustal Structure of Northeastern Lau Basin Using Deep-tow and Surface-tow Magnetic Data (심해 및 표층 지자기 자료를 이용한 라우분지 북동부의 열수 분출구 및 해저 지각 구조 연구)

  • Kwak, Joon-Young;Won, Joong-Sun;Park, Chan-Hong;Kim, Chang-Hwan;Ko, Young-Tak
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Fonualei Rift and Spreading Center(FRSC) and Mangatolu Triple function(MTJ) caldera are located in northeastern part of Lau basin which is the active back-arc basin. Deep-tow and surface-tow magnetic surveys are carried out in FRSC. In deep-tow magnetic survey, to compensate for influence of uneven distance between bathymetry and sensor height, magnetic anomaly is continued upward to a level plane by using the Guspi method. We calculate crustal magnetization using Parker and Huestis's inversion algorithm, and try to find the hydrothermal vent and understand the structure of ocean floor crust. The result of deep-tow magnetic survey at FRSC showed that Central Anomaly Magnetization High(CAMH) recorded the max value of 4.5 A/m which is associated with active ridge. The direction of SSW-NNE corresponds with the direction of the principal spreading ridge in Lau basin. The low crustal magnetizaton$(174^{\circ}35.1'W,\;16^{\circ}38.4'S)$ of -4.0 A/m is supposed to correlate with submarine hydrothermal vent. Surface-tow magnetic data were collected in MTJ caldera$(174^{\circ}00'W,\;15^{\circ}20'S)$. The prevailing SSW-NNE direction of collapsing walls and the presence of CAMH at the center of caldera strongly indicate the existence of active spreading ridge in ancient times.

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

3-D P-wave Velocity Structure in South Korea using Seismic Tomography (지진 토모그래피 방법을 이용한 남한에서의 3차원 P파 속도구조)

  • 박재우;민경덕;전정수;제일영
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • 3-D P-wave velocity model in the southern Korean Peninsula is investigated by using the earthquake tomography method. This velocity model would be used to locate the exact hypocenter position, and also useful for our understanding of the crustal structure. The simultaneous inversion is used to get the minimum 1-D model and hypo-center relocation, which are used as an initial 3-D velocity model. The velocities in the minimum 1-D model are 6.04 km/s, 6.45 km/s, and 7.78 km/s between the depth of 0-19 km, 19-32 km, and 32-55 km respectively. In the 3-D P-wave velocity model, Layer 1 (0~3 km) has high velocities in Kyongsang basin, Yonglam massif, and Okchon folded belt, and low velocities in Kyonggi massif. In layer 2 (3~19 km) high velocities are predominent around Kyonsang basin and Yongnam massif except Yonil basin, but low velocities exist around Kyonggi massif and Okchon folded belt. In Laye. 3 (19~32 km) high velocities prevail throughout the southern part of Korean Peninsula, but low velocity does throughout the middle except SNU, YIN station in Konggi massif. In Layer 4 (32 km), the maximum velocity is showed in the middle and southwestern part, while the minimum velocity in the southeastern and coastal area. The depth of the velocity boundary corresponds to the crustal structure of the southern Korean Peninsula which is calculated by gravity data.

Manufacture of Wide-Angle Reflection/Refraction Seismic Recorder (해양 광각 반사/굴절 탐사 기록장비 제작)

  • Jung, Baek-Hoon;Jou, Hyeong-Tae;Kim, Han-Joon;Park, Gun-Tae;Hong, Sup
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.73-78
    • /
    • 2008
  • We introduce OBS and sonobuoy systems which are the typical wide-angle reflection/refraction seismic recorders made by KORDI for the investigation of crustal structure and the sediment/basement structure in the coastal area. These recording devices are examined for their usage through the test survey. The normal operation of these devices were proved and good recordings were obatined. The head waves are recognized in the sonobuoy records, which shows the possibility of velocity structure survey by the refraction and/or tomography method.

  • PDF

Geoelectrical Structure of the Kyongsang Basin from Magnetotelluric Sounding

  • Lee, Choon-Ki;Lee, Heui-Soon;Kwon, Byung-Doo;Cho, In-Ky;Oh, Seok-Hoon;Song, Yoon-ho;Lee, Tae-Jong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.273-286
    • /
    • 2006
  • The Kyongsang Basin is the most representative Cretaceous basin in the Korean Peninsula where extensive crustal deformation and non-marine sedimentation took place in the early Cretaceous period. The lithology of the basement of the basin and adjacent areas is comprised of mainly Precambrian gneiss complex and Mesozoic granite intrusions. We have carried out magnetotelluric (MT) surveys to investigate the deep geoelectric structure around the Kyongsang Basin. The MT data were collected in the frequency range from 0.00042 to 320 Hz at 24 sites along a profile across the northern part of Kyongsang Basin. The results of MT inversion show that the thickness of sediments is estimated about 3 km to 9 km and the depth to base of granite intrusion is about 20 km. A remarkable discovery in this study is the highly conductive layer beneath the basin, having the resistivity of 1 ohm-m to 30 ohm-m and the thickness of about 3 km to 4 km or more. Although we are not able to reveal the nature of this layer, the result of this study could provide some basic information with respect to the formation process and deposit environment of the proto-Kyongsang Basin.

  • PDF

Crustal structure of the Korean peninsula by inverting the travel times of first-arrivals from large explosions (대규모 발파자료 초동주시 역산을 통한 한반도 지각 속도구조 연구)

  • Kim Ki Young;Hong Myung Ho;Lee Jung Mo;Moon Woo Il;Baag Chang Eob;Jung Hee Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.103-107
    • /
    • 2005
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting first arrival times. One-dimensional velocity models derived by joint analyses of teleseismic receiver functions and surface wave dispersion at several stations near the profiles were uesd to build initial models. The raypaths indicate several midcrust interfaces including ones at approximate depths of 2.0 and 14.9 km with refraction velocities of approximately 6.0 and 7.1 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting velocity varies from 7.8 to 8.1 km/s along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at 6-7 km depth under the Okchon fold belt, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin whose thickness is less than 4.2 km.

  • PDF