• Title/Summary/Keyword: Crushing failure

Search Result 141, Processing Time 0.026 seconds

Structural Integrity Evaluation of Mechanically Fastened FRP Beams Under the Effects of Sustained Loads and Environments (지속하중과 환경영향을 받은 MF-FRP 보강보의 구조건전성 평가)

  • Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Mechanically fastening FRP (MF-FRP) strips using nails and anchors, has been shown to provide a more ductile behavior to the strengthened structural element than using bonded FRP. To further advance the state of the knowledge on this strengthening method, the current study examined environmental effects for six months on MF-FRP beams. Reinforced concrete beams strengthened with mechanically fastened FRP strips and subjected to sustained loads for six months were exposed to outdoor weather and constant high temperatures ($40^{\circ}C$). For comparison, the behavior of RC beam with and without sustained loads was evaluated. Results from flexural tests did not show any significant degradation or change of failure mode as a result of sustained load and of environmental effects such as high temperatures and outdoor weather over a period of six months. Failure of the beams was governed by FRP delamination followed by concrete crushing as not much load applied to the nail and anchors because of slip effects.

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

The Reconstruction of Foot using Medial Plantar Flap (내측 족저 피판을 이용한 족부의 재건)

  • Chung, Duke-Whan;Lee, Jae-Hoon
    • Archives of Reconstructive Microsurgery
    • /
    • v.11 no.2
    • /
    • pp.153-161
    • /
    • 2002
  • Purpose : Plantar surfaces, calcaneal area, and region of Achilles insertion, which are extremely related with weight-bearing area and shoes application, must be reconstructed with glabrous and strong fibrous skin. Numerous methods of reconstructing defects of these regions have been advocated, but the transfer of similar local tissue as a cutaneous flap with preservation of sensory potential would best serve the functional needs of the weight-bearing and non-weight-bearing surfaces of this region. Therefore it is recommended to use the limited skin of medial surface of foot that is similar to plantar region and non-weight-bearing area. In this paper we performed the medial plantar flap transfered as a fasciocutaneous island as one alterative for moderate-sized defects of the plantar forefoot, plantar heel, and area around the ankle in 25 cases and report the result, availability and problem of medial plantar flap. Materials and methods : We performed proximally based medial plantar flap in 22 cases and reverse flow island flap in 3 cases. Average age was $36.5(4{\sim}70)$ years and female was 3 cases. The causes of soft tissue defect were crushing injury on foot 4 cases, small bony exposure at lower leg 1 case, posterior heel defect with exposure of calcaneus 8 cases, severe sore at heel 2 cases, skin necrosis after trauma on posterior foot 4 cases, and defect on insertion area of Achilles tendon 6cases. Average follow up duration was 1.8(7 months-9.5 years) years. Results: Medial plantar flaps was successful in 22 patients. 18 patients preserved cutaneous branches of medial plantar nerve had sensation on transfered flap but diminished sensation or dysesthesia. At the follow up, we found there were no skin ulceration, recurrence of defect or skin breakdown in all 18 patients. But there was one case which occurred skin ulceration postoperatively among another 4 cases not contained medial plantar nerve. At the last follow up, all patients complained diminished sensation and paresthesia at medial plantar area distally to donor site, expecially with 4 patients having severe pain and discomfort during long-time walking. Conclusion : Medial plantar island flap based on medial plantar neurovascualr pedicle have low failure rate with strong fibrous skin and preserve sensibility of flap, so that it is useful method to reconstruct the skin and soft tissue defect of foot. But it should be emphasized that there are some complications such like pain and paresthesia by neuropraxia or injury of medial plantar nerve at more distal area than donor site. We may consider that medial plantar flap have limited flap size and small arc of rotation, and require skin graft closure of the donor defect and must chose this flap deliberately.

  • PDF

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction (콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가)

  • Yang, Keun-Hyeok;Kwon, Hyuck-Jin;Park, Jong-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.106-112
    • /
    • 2017
  • This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.

Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification (p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정)

  • Ahn Jae-Seok;Park Jin-Hwan;Woo Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of RC beams and slabs strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version nonlinear finite element model is demonstrated through the load-deflection curves, the ultimate loads, and the failure modes of RC beams or slabs bonded with steel plates or FRP plates compared with available result of experiment and other numerical methods.

EFFECTS OF LOCAL IRRIGATION AND/OR INTRAVENOUS ADMINISTRATION OF ARGATROBAN ON THROMBOSIS IN MICROVASCULAR ANASTOMOSES OF FEMORAL VEIN OF RABBIT (가토대퇴정맥에서 미세혈관문합시 Argatroban의 국소세척 및 전신투여가 혈전형성에 미치는 영향)

  • Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.4
    • /
    • pp.300-305
    • /
    • 2005
  • Purpose: For the reconstruction of maxillofacial defect created by trauma, infection, or tumor etc, the role of microvascular anastomosis or vessel graft has been increased. Many methods has been tried to increase the success rate of microvascular anastomosis. Various anticoagulants and thrombolytic agents have been used to reduce the failure rate of microvascular anastomosis and avoid re-operation. Many drugs, however, have been used in the limited cases because most of these drugs may cause complications, such as allergy, fever or systemic bleeding. This study was performed to evaluate the influence of the Argatroban on patency and thrombosis in microvascular anastomosis when it is used for local irrigation or general administration. Materials & methods: Eight mature rabbits, weighing 2kg, were used. After exposing both femoral veins, the artificial thrombotic model was made by crushing injury using a smooth needle holder, and the transverse incision were made on femoral vein. The animals were divided into 4 groups according to Argatroban administration methods; control group (n=4), topical irrigation of lumen with saline solution; experimental group 1 (n=4), topical irrigation of lumen with Argatroban saline solution; experimental group 2 (n=4), topical irrigation of lumen with heparin followed by intravenous injection of Argatroban; experimental group 3 (n=4), topical irrigation of lumen with Argatroban followed by IV of Argatroban. Microvascular anastomosis was done with 10-0 Ethilon. The patency was evaluated by empty-and-refill test 30 minutes and 3 days after microanastomosis. The thrombus formation was examined 3 days after microanastomosis by surgical microscope. The histologic findings were also examined. Results: 1. Thirty minutes after microvascular anastomosis, the patency of all experimental groups was better than that of control group, but there was no significant difference among groups. 2. Three days after microvascular anastomosis, the patency of all experimental groups was more improved than that of control group (p<0.05). There was no significant difference among experimental groups. 3. Three days after microvascular anastomosis, the amount of thrombus in all experimental groups was less than that of control group (p<0.05). There was no significant difference among experimental groups. 4. Histologically, a lot of luminal thrombus was observed around sutured area in control group. Few luminal thrombus was observed in all experimental groups. The necrotic changes were observed on the sutured vein wall in all specimens. Conclusion: These results indicate that topical irrigation and/or intravenous administration of Argatroban is effective in improving patency and preventing thrombus formation after microvascular anastomosis.

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

Evaluation on In-plane Shear Strength of Lightweight Composite Panels (경량 복합패널의 면내 전단 성능 평가)

  • Hwang, Moon-Young;Kang, Su-Min;Lee, Byung-yun;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.