• Title/Summary/Keyword: Crushing effect

Search Result 141, Processing Time 0.025 seconds

Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand (Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동)

  • Kim, Seok-Ju;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • The carbonate sands of the Sabkha layer in the Middle East have very low shear strength. Therefore, instant settlement and time-dependent secondary settlement occur when inner voids are exposed, as in the case of particle crushing. We analyzed settlement of the Sabkha layer under a large-scale foundation by hydrotesting, and compared the field test results with the results of laboratory tests. With ongoing particle crushing, we observed the following stress-strain behaviors: strain-hardening (Sabkha GL-1.5 m), strain-perfect (Sabkha GL-7.0 m), and strain-softening (Sabkha GL-7.5 m). General shear failure occurred most frequently in dense sand and firm ground. Although the stress-strain behavior of Sabkha layer carbonate sand that of strain-softening, the particle crushing strength was low compared with the strain-hardening and strain-perfect behaviors. The stress-strain behaviors differ between carbonate sand and quartz sand. If the relative density of quartz sand is increased, the shear strength is also increased. Continuous secondary compression settlement occurred during the hydrotests, after the dissipation of porewater pressure. Particle crushing strength is relatively low in the Sabkha layer and its stress-strain behavior is strain-softening or strain-perfect. The particle crushing effect is dominant factor affecting foundation settlement in the Sabkha layer.

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형 능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.59-68
    • /
    • 2010
  • In the present study, the deformation capacity of slender shear walls with thin web subject to inelastic deformation after flexural yielding was studied. Web-crushing and rebar-fracture were considered as the governing failure mechanisms of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

Physical, Mechanical and Durability Properties of the Quartzite Units of Central Nepal Lesser Himalaya

  • Dinesh Raj Sharma;Naresh Kazi Tamrakar;Upendra Baral
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.67-105
    • /
    • 2024
  • This study compares the quartzites of four quartzite units: The Fagfog Quartzite, Dunga Quartzite (member of the Robang Formation), Pandrang Quartzite (member of the Kalitar Formation) and the Chisapani Quartzite. The analysis shows variations in flakiness and elongation, as the Fagfog Quartzite displays low flakiness whereas the Pandrang and the Chisapani have moderate and the Dunga Quartzite has shown variations. The density values of the four quartzite units remain consistent, indicating uniform physical properties and porosity levels. However, bulk density values differ among the quartzites, suggesting variations in particle arrangement, porosity, and density. Regarding strength measures, the Pandrang and the Chisapani Quartzite have higher strength characteristics as compared to the Fagfog and the Dunga Quartzites. The Pandrang Quartzite has the highest average point load strength index, classifying it as "Extremely Strong". The resistance to impact and crushing forces varies among the quartzites, with lower Aggregate Impact Value (AIV) and Aggregate Crushing Value (ACV) indicating higher strength and durability. Durability tests show that the Fagfog Quartzite has high durability against slaking, with a slight decrease observed after the fifth cycle. The Dunga Quartzite shows varying degrees of weathering, while the Pandrang and the Chisapani Quartzite have minimal weight changes, indicating strong resistance to weathering. Magnesium sulfate soundness tests indicate high durability and resistance to degradation for all four units. The Los Angeles abrasion value (LAAV) tests indicate favorable resistance to abrasion for the majority of the Fagfog, Dunga, and the Pandrang Quartzites samples, while Chisapani Quartzite shows more variability in LAAV values. The Pandrang Quartzite shows a higher proportion of elongated particles but lower flakiness index values as compared to Fagfog and Dunga Quartzites while Chisapani Quartzite stands out with a significantly higher presence of flaky particles and lower elongation index values. Mechanically, the Fagfog and Dunga Quartzite show higher strength and better resistance to abrasion and freeze and thaw. The Pandrang Quartzite shows moderate resistance to crushing and sudden effect, while the Chisapani Quartzite has variable resistance to effect. This comparative study emphasizes the diversity and complexity of quartzite rock types, showing the need for comprehensive characterization and assessment to determine their suitability for specific applications.

A Study on Application of Waste Sand as Concrete Fine Aggregate (콘크리트용 잔골재로서 폐기물 모래의 적용성에 관한 연구)

  • 윤장길;김효열;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.15-20
    • /
    • 2004
  • To the development on reusing method of the heat-source waste at Daegu Bisan dyeing-complex, this study is aimed to application of it's crushing material (hereafter waste sand) as concrete fine aggregate. The results are as follows; 1. Flow and unit weight of mortar using waste sand as concrete fine aggregate are decreased. 2. At the results of compressive strength test and bending strength test, mortar using waste sand superior to plain mortar within 80% substitute ratio of waste sand. Because increasing rate of compressive strength is similar through increasing age, waste sand performs as filler's function of no-effect with cement only. 3. At the results of concrete application test, unit weight of concrete using waste sand is similar to plain concrete and compressive strength of concrete is superior to plain likewise the results of mortar test

  • PDF

Studies on the Processing Functional Properities of Fish Meat by Cryogenic Crushing (냉동분쇄에 의한 어육의 가공기능성 연구)

  • 이성갑;김연수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.5
    • /
    • pp.77-82
    • /
    • 2000
  • In this study, effect of freezing and cryogenic crushing on physico-chemical characteristics of sardine, pollack and sqiud representative for domestic frozen fishery products was investigated and some product using them was tried to be prepared. Dehead and viscerated, washed fishes were subjection to freezing without air circulation and liquid N2 gas at -20$\^{C}$,-40$\^{C}$ and -80$\^{C}$, and then frozen fishes were crushed by hammermill, masscolloider and the product was stored added with anti-freeze such as sorbitol, phosphates, starch and egg Powder, qualify of frozen squid surimi was not changes during 70 days at below -20$\^{C}$ . The results of quality characteristics and sensory evaluation of patties and nugget which made from shattered squid and pollack were similar to commercial products in flavor, color and texture, but sardine meat was inferior to commercial products in flavor and color.

  • PDF

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.