• Title/Summary/Keyword: Crushed fine aggregate

Search Result 126, Processing Time 0.027 seconds

Effects of Crushed Fine Aggregate and Durability Improvement Agent (DIA) on Blast Furnace Slag-Based Brick (내구성증진용 혼화제(DIA) 및 부순 잔골재의 복합 치환이 순환잔골재를 사용한 고로슬래그 벽돌의 특성에 미치는 영향)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.225-227
    • /
    • 2011
  • This study investigates the effect of crushed fine aggregate and chemical admixture (durability improvement agent, named DIA) on blast furnace slag-based brick. The control brick was made with recycled fine aggregate of 100% and, no cement was used. Test results showed that all specimens developed similar strength, except for the specimen without partial replacement of crushed fine aggregate at 3 days. However, it is interesting to note that this specimen without crushed fine aggregate resulted in the highest strength at 7 days. In addition, the DIA had a major effect on the absorption ratio of brick specimens. For the brick specimens with partial replacement of crushed fine aggregate with 10%, the addition of DIA with only 1% was enough to satisfy the code regulated by KS F 4004.

  • PDF

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Acid Resistance of Unsaturated Polyester Mortar Using Crushed Wate Glass (폐유리를 골재로 사용한 불포화폴리에스테르 모르타르의 내산성에 관한 연구)

  • 한창호;최길섭;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.339-342
    • /
    • 2000
  • Recently, the importance of the conutermeasures for waste materials has pointed out. Waste glass is also one to waste materials used for the recycling in construction sites. The crushed waste glass has been used to make a glass polymer composite that can be applied for sewer, storm drain pipe and interlocking block, etc. In this study, the crushed waste glass is explored with the possibility of recycling it, as a substitute for fine aggregates. The prepose of this investigation is to improve the strengths and acid resistance of the UP mortars using crushed waste glass. The UP mortars are prepare with blast furnace slag fly ash filler. the UP-fine aggregate ratios the crushed waste glass replacements for fine aggregate are tested strengths before and after immersion(H (아래첨자2)SO(아래첨자4) 10%), weight change and acid resistance are also tested. From the test results, the relative strength or UP mortars using fly ash as filler are found to be somewhat superior to that of the UP mortars using blast furnace as filler, And a UP mortar with fly ash as a filler, a UP-fine aggregate ratio of 15% and a waste glass replacement if 50% for fine aggregate is recommended as optimal mix proportion of UP mortar using crushed waste glass. Accordingly, it is enough to assure the use of the crushed waare glass as an aggregate for the production of UP mortar.

  • PDF

Effective Use of Micro Fines (미분의 효과적인 이용에 관한 연구)

  • 백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixtures such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixtures such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the final mix. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the natural sands are drained, it is necessary and economical to utilize crushed sands(manufactured fine aggregate). It is reported that crushed sands differ from natural sands in gradation, particle shape and texture, and the micro fines in the crushed sands affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with high content of micro fines. This study provides firm data for the use of crushed sands with higher micro fines.

  • PDF

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.

The Properties of Mortar Mixtures Blended with Natural, Crushed, and Recycled Fine Aggregates for Building Construction Materials

  • Yu, Myoung-Youl;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 2012
  • In this research, the possible applicability of mixture blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to be an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.

Influence of Kind of Fine Aggregate on Fundamental Properties of Concrete (잔골재의 종류가 콘크리트의 기초적 특성에 미치는 영향)

  • Heo, Young-Sun;Han, Chang-Pyung;Han, Min-Cheol;Kwon, Oh-Hyun;Choi, Young-Wha;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.153-156
    • /
    • 2006
  • This study investigated influence of kind of fine aggregate on fundamental properties of concrete. For the properties of fluidity with various type of fine aggregate, lime stone crushed fine aggregate(Ls) exhibited favorable result, due to grain shape and particle distribution, and next was granite crushed fine aggregate(Gs), natural fine aggregate(Ns). Ns had the highest value of air content while Ls had the lowest, due to the effective filling performance by continuos particle distribution. Ls, Ns, Gs in an order had higher bleeding capacity and faster setting time. However, compressive and tensile strength value exhibited similar tendency, regardless of aggregate type.

  • PDF

Study on the Properties of Antiwashout Underwater Concrete as to Fine aggreate Kinds (잔골재의 종류에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 박세인;신현필;이환우;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.941-946
    • /
    • 2001
  • In this study, three kinds of fine aggregate (river sand, sea sand, crushed sand) were used and four different s/a (38%, 40%, 42%, 45%) were applied separately to this experimental for get the conclusion written below. Regardless of kinds of fine aggregate and casting-curing condition, maximum unit weight is seen at 40% of s/a and also to be seen in case of crushed sand. It's for that specific gravity of crushed sand is bigger comparatively than river sand and sea snad's one. Compressive strength is measured river sand, crushed sand, sea sand by order of size ; Regardless of variation of s/3, casting-curing condition and age. Compressive strength recorded maximum when s/a is 42% whatever sort of fine aggregate are. As the result, according to references, the optimum s/a of underwater antiwashout concrete is 40% but in this study, from compressive strength of view, the optimum s/a of underwater antiwashout concrete is 42%.

  • PDF

Effect of the Combination of Coarse Aggregate and Fine Aggregate on the Flowability of Ultra High Strength Concrete (굵은 골재 및 잔골재 변화가 초고강도 콘크리트의 유동특성에 미치는 영향)

  • Lee, Hong-Kyu;Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.71-72
    • /
    • 2015
  • As this study is the one related to the ultra high strength concrete essentially used for high rise buildings, it has analyzed on the flowability of ultra high strength concrete according to the variation of coarse aggregate and fine aggregate. The coarse aggregate was planned as two types including Granite Aggregate (GA) and crushed coarse Limestone Aggregate (LA) while fine aggregate was planned as four types including Sea Sand (SS), Limestone Crushed Fine Aggregates (LFA), Electric Arc Furnace Oxidizing Slag Aggregates (EFA) and Crushed Sand (CS) to perform experiment with a total of eight variables. As a result of analyzing slump flow, 500mm concentration time, U-Box and L-Flow, etc. among the characteristics of fresh concrete, a mix using LA+LFA is determined to show high flowability in case of applying ultra high strength concrete.

  • PDF