• Title/Summary/Keyword: Crucible

Search Result 319, Processing Time 0.027 seconds

Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Chan Bock;Cheon, Jin Sik;Kim, Sung Ho;Park, Jeong-Yong;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1096-1108
    • /
    • 2016
  • Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U-transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

An Analytical Evaluation of Fire and Explosion Characteristics of Ethylene (에틸렌의 화재 및 폭발 특성치의 분석적 평가)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.50-56
    • /
    • 2009
  • Explosion limit and autoignition temperature are the major properties used to determine the fire and explosion hazards of the flammable substances. Explosion limit and autoignition temperature for safe handling of ethylene were investigated. By using the literatures data, the lower and upper explosion limits of ethylene recommended 2.6vol% and 36vol%, respectively. Also autoignition temperatures of ethylene with ignition sources recommended $420^{\circ}C$ at the electrically heated crucible furnace (the whole surface heating) and recommended about $800^{\circ}C$ in the local hot surface. The new equations for predicting the temperature dependence and the pressure dependence of the lower explosion limits for ethylene are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Effect of Aluminum, Manganese, and Zirconium on the Content of Nickel in Molten Magnesium (마그네슘용탕의 니켈 함량에 미치는 알루미늄, 망간 및 지르코늄의 영향)

  • Jeong, Dae-Yeong;Moon, Young-Hoon;Moon, Byoung-Gi;Park, Won-Wook;Sohn, Keun-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Variations of nickel contents and microstructures in molten magnesium alloys on the addition of aluminum, zirconium, and manganese have been investigated. Specimens were prepared by melting under $SF_6$ and $CO_2$ atmosphere and casting into a disc of 29 mm diameter with 7~10 mm thickness from the melt acquired at the top of crucible. Before casting, the molten metal was stirred for 3 minutes after each addition of alloying elements and maintained for 30 minutes for settling down. Results showed that zirconium did not significantly affect the content of nickel while aluminum remarkably reduced it by forming $Al_3Ni_2$ phase. When manganese are added to Mg-1wt%Ni alloy along with aluminum, both elements remarkably reduced the content of nickel. The addition of 1.5 wt% manganese to Mg-1wt%Ni alloy containing aluminum further reduced the content of nickel by more than 30%, during which an additional intermetallic phase $Al_{10}Mn_3Ni$ was precipitated in the molten magnesium.

Selection of Heater Location in Linear Source for OLED Vapor Deposition (OLED 증착을 위한 선형증발원 히터 위치선정)

  • Joo, Young-Cheol;Han, Choong-Hwan;Um, Tai-Joon;Lee, Sang-Wook;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.515-518
    • /
    • 2008
  • Organic light emitting diode(OLED) is one of the most promising type of future flat panel display. A linear source is used to deposite organic vapor to a large size OLED substrate. An electric heater which is attached on the side of linear source heats the organic powder for the sublimation. The nozzle of heater, which is attached at the top of the linear source has an optimal temperature. An numerical analysis has been performed to find optimal heater position for the optimal nozzle temperature. A commercial CFD program, FLUENT, is used on the analysis. Two-dimensional and three-dimensional analysis have been performed. The analysis showed that the heater should be attached at the outer side of crucible wall rather than inner side of housing, which was original design. Eighteen milimeter from the top of the linear source was suggested as the optimal position of heater. Improving thermal performance of linear source not only helps the uniformity of organic vapor deposition on the substrate but also increase productibity of vapor deposition process.

Effect of Applied Magnetic Fields on Czochralski Single Crystal Growth (Czochralski 단결정 성장특성제어를 위한 자장형태에 관한 연구)

  • 김창녕;김경훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.18-30
    • /
    • 1993
  • A numerical analysis has been carried out on the Czochralski flow fields when uniform and nonuniform magnetic fields are applied. Czochralski flow fields are governed by buoyancy forces, thermocapillarity, centrifugal forces, and applied magneic fields. In this analysis, pressure and three components of velocity vectors are obtained, and circumferential electrical currents are calculated. When a uniform magnetic field is applied, all the velocity components are decreased and the circumferential electric currents near the crystal surface are increased as the magnetic field intensity is increased. In the case of a nonuniform field, the flows in a meridional plane are suppressed and the circumferential velocity is increased as the non uniformity is increased. The understanding on the Czochralski flow fields under the influence of magnetic fields can lead to the study on the behavior of the concentration of the solute and impurities.

  • PDF

A Resistance Property Against High Velocity Impact on Oxynitride Glasses (질화유리의 고속충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.646-652
    • /
    • 2006
  • Several oxynitride glasses were fabricated by means of adding $Si_3N_4$ powders as nitrogen source to Ca-Al-Si-O-N (CAS) and Mg-Al-Si-O-N (MAS) glass powders, and heat-treated in graphite crucible at 1600$^{\circ}C$ for 1 h. The physical and mechanical properties as well as impact resistance were generally increased and compared with each other. The impact resistance properties of those manufactured glasses were evaluated by DOP (depth of penetration) method which is a way to analyze armor materials. There were two means to be used herein; the copper jet impacted at hyper velocity by exploding K2l5 warhead and tungsten heavy alloy (WHA) impact bar at high velocity by firing in 30 mm solid propellent gun. The impact resistance properties against copper jet were increased and then decreased with increasing nitrogen content, while those against WHA bar were not changed apparently with nitrogen content.

LPE growth of $La_{2-x}Sr_{x}CuO_{4}$ single-crystalline films

  • Tanaka, Isao;Tanabe, Hideyoshi;Watauchi, Satoshi;Kojima, Hironao
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.299-302
    • /
    • 1999
  • $La_{2-x}Sr_{x}CuO_{4}$ single-crystalline films were prepared on bulk single crystals of Zn-doped $La_{2-x}Sr_{x}CuO_{4}$ as the substrates by LPE technique using two deferent methods. When prepared using an alumina crucible in normal electrical furnace, the $La_{2-x}Sr_{x}CuO_{4}$ films were contaminated with less than 3 at% aluminum from the alumina crucibles. Aluminum contamination either reduced or completely destroyed the superconductivity of the $La_{2-x}Sr_{x}CuO_{4}$ films, For LPE growth by modified TSFZ method using an infrared heating furnace without crucibles, the $La_{2-x}Sr_{x}CuO_{4}$ films of x=0.11 showed superconducting with $Tc_{onset}=36\;K$, which is 10 K higher than that in the $La_{2-x}Sr_{x}CuO_{4}$ bulk single crystals.

  • PDF

The Effect of an Axial Magnetic Field on Czochralski Growth of Silicon (초크랄스키법에 의한 실리콘 단결정 성장시 축방향 자기장의 영향)

  • 정형태;한승호;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1993
  • A suppression of turbulent fluid motion and a control of oxygen and dopants could be improved by application of magnetic field in Czochralski growth of silicon. The effect of an axial magnetic field on Czochralski system was numerically calculated. The fluid motions induced by temperature gradients and by crystal and crucible rotations were suppressed by magnetic force. The S/L interface was gradually flattened in proportion to the increase of magnetic field due to a reduced ascending velocity in the vicinity of center line. The t.emperature distributions in the melt at 8=0.3 Tesla were similar to those analyzed by the conduction heat transfer only. The dissipated amounts of heat flux from melt and crystal surfaces by Ar gas blowing was Jess than 3 %.

  • PDF

A Study on the Fabrication and Characteristics of ITO thin Film Deposited by the Ionized Cluster Beam Deposition (Ionized Cluster Beam 증착방법을 이용한 Indium-Tin-Oxide(ITO) 박막의 제작과 그 특성에 관한 연구)

  • 최성창;황보상우;조만호;김남영;홍창의;이덕형;심태언;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.54-61
    • /
    • 1996
  • Indium-tin oxide (ITO) films were deposited on the glass substrate by the reactive -ionized cluster beam deposition(ICBD) method. In the oxygen atmosphere, indium cluster formed through the nozzle is ionized by the electron bombardment and is accelerated to be deposited on the substrate. And tin is simultaneoulsy evaporated from the boron-nitride crucible. The chracteristics of films were examined by the X-ray photoelectron spectroscopy(XPS), glancing angle X-ray diffractrion(GXRD) and the electrical properties. were measured by 4-point-probe and Hall effect measurement system . From the XPS spectrum , it was found that indium and tin atoms combined with the oxygen to form oxide$(In_2O_3, SnO_2)$. In the case of films with high tin-concentration, the GXRD spectra show that the main $In_2O_3$ peak of (222) plane, but also sub peaks((440) peak etc.) and $SnO_2$ peaks were detected. From that results, itis concluded that the heavily dopped tin component (more than 14 at. %) disturbs to form $In_2O_3$(222) phase. Four-point-probe and Hall effect measurement show that, in the most desirable case, the transmittance of the films is more then 90% in visible range and its resistivity is $$\rho$=3.55 \times10^{-4}\Omega$cm and its mobility is $\mu$=42.8 $\textrm{cm}^2$/Vsec.

  • PDF

The Effects of the Amount of $\textrm{SiO}_2$ Dopant on the Melt Oxidation Behavior of the Al-Alloy (Al-합금의 용융산화거동에 미치는 $\textrm{SiO}_2$도판트 량의 영향)

  • Gang, Jeong-Yun;Kim, Il-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.609-614
    • /
    • 1999
  • The effect of the amount of $SiO_2$dopant on the behavior of $AlO_2$$O_3$-composite formation by melt oxdation of Al-alloy was examined in this paper. The $SiO_2$powder was spread on the top surface of the Al-1Mg-3-Si-5Zn-1Cu alloy in th alumina crucible. The selected amount of each powder was 0.03, 0.10, 0.16g/$\textrm{cm}^2$. The oxidation behavior was determined by observing the weight gain after the heat treatment for 10 hours at 1373K. The macroscopic structure of formed oxide layer was examined by an optical microscope. The top surface and the cross-section of the grown oxide layer were investigated by SEM and analysed by EDX. The $SiO_2$ powder was determined to enhance oxidation by thermit reaction with Al which reduced the growth incubation period of the oxidation layer. As the amount of the $SiO_2$dopant increased, the growth rate decreased due to the precipitated Si which blocked the Al-alloy channel in the composite materials. However, more uniform layer was obtained due to the occurrance of the enhanced oxidation reaction in the whole alloy surface compared to the case of addition of less amount of dopant.

  • PDF