• Title/Summary/Keyword: Crown area

Search Result 478, Processing Time 0.024 seconds

Effects of Soil Amendments on the Early Growth and Heavy Metal Accumulation of Brassica campestris ssp. Chinensis Jusl. in Heavy Metal-contaminated Soil (중금속 오염 토양에서 안정화제가 청경채의 초기 생육과 중금속 흡수량에 미치는 영향)

  • Kim, Min-Suk;Koo, Namin;Kim, Jeong-Gyu;Yang, Jae-E.;Lee, Jin-Su;Bak, Gwan-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.961-967
    • /
    • 2012
  • There have been many studies about efficiency of amendments for heavy metal stabilization through chemical assessment. The objective of this study was to evaluate the efficiency of several soil amendments (lime, agric-lime, dolomite, steel slag, fly ash and acid mine drainage sludge) on heavy metals stabilization through not only chemical but also biological assessments (phytotoxicity test) in abandoned mining area soil. In order to achieve the goal, we conducted preliminary screening experiment targeting 12 types of crop plants such as radish, young radish, chinese cabbage, winter grown cabbage, cabbage, bok choy, chicory, crown daisy, carrot, chives, spinach, and spring onion. The results of inhibition rates of early plant growth in metal-contaminated soil against non-contaminated soil and the correlations between inhibitions items showed that the bok choy was appropriate specie with respect to confirm the effect of several amendments. Several amendment treatments on contaminated soil brought about the changes in the root and shoot elongation of bok choy after 1 week. Agric-lime, dolomite and steel slag treatments showed the great efficiency of reducing on mobility of heavy metals using chemical assessment. But in contrary, these treatments resulted in the reduction of root and shoot elongation and only AMD sludge increased that of elongation, significantly. When considering both chemical and biological assessments, AMD sludge could be recommended the compatible amendment for target contaminated soil. In conclusion, biological assessment was also important aspect of decision of successful soil remediation.

Effects of Application Method of GA4+7+BA on Tree Growth and Fruit Characteristics of 'Gala' Apple (GA4+7+BA의 처리방법이 사과 '갈라' 품종의 수체생장 및 과실특성에 미치는 영향)

  • SaGong, Dong-Hoon;Yoon, Tae-Myung;Choi, Seak-Won
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.552-560
    • /
    • 2010
  • $GA_{4+7}$+BA, a plant growth regulator for induction of feathering in young apple tree and increasing fruit size, was applied by various methods on 'Gala'/M.9 apple trees in high density orchard for 4 years to investigate its effect on fruit and shoot growth. $GA_{4+7}$+BA($80-300mg{\cdot}L^{-1}$) increased fruit length, fruit weight, and L/D ratio regardless of application methods, but it did not affect soluble solid content, acidity, leaf area, and chlorophyll. Seed number was not affected by $GA_{4+7}$+BA application, however, more immature seeds was observed in treated 'Gala' fruit. Shoot growth was increased when spraying $GA_{4+7}$+BA at tree crown but not affected when spraying at fruit directly. More significant fruit growth was observed when $GA_{4+7}$+BA was applied on the fruits between late of May and early of June when fruit cell division ended; however, high concentration of $GA_{4+7}$+BA resulted in lower fruit storability because of lower firmness. Hence, more attention should be paid when applying high concentration of $GA_{4+7}$+BA to small sized fruit cultivars like 'Gala'.

Experimental study on the tunnel behavior induced by the excavation and the structure construction above existing tunnel (기존터널 상부지반 굴착 후 구조물 설치에 따른 터널거동에 관한 실험적 연구)

  • Cha, Seok-Kyu;Lee, Sangduk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.640-655
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structures. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process in the ground under the excavation basement can affect the existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effect of the excavation of the ground and the new structure load on the existing tunnel was experimentally implemented and the influence of the adjacent construction on the existing tunnel was investigated. For this purpose a large testing model with 1/5 scale of the actual size was manufactured. The influence of ground excavation, width of the load due to new structure, and distance between centers of tunnel and of excavation on the existing tunnel was investigated. In this study, it was confirmed that the influence on the existing tunnel gets larger, as the excavation depth get deeper. At the same distance, it was confirmed that the tunnel displacement increased up to three times according to the increase of the building load width. That is, the load width influences the existing tunnel larger than the excavation depth. As the impact of the distance between centers of tunnel and of excavation, it was confirmed that tunnel crown displacement decreased by 48%. The result showed that a tunnel is located in the range of 1D (D: tunnel diameter) from the center of excavation, the effect of excavation is the largest.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

CLASS II COMPOSITE RESIN RESTORATION USING ORTHODONTIC BANDS (교정용 밴드를 이용한 구치부 2급 와동의 복합레진 수복)

  • Park, Sung-Dong;Park, Ki-Tae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • Children and teenagers have a higher frequency of proximal surface caries in the posterior teeth than adults. For proximal restoration, class II amalgam or stainless steel crown has been widely used in the past, however composite resin restoration is getting ore popular due to it's superior cosmetic appearance. When applying composite resin on proximal area, various types of matrix bands can be utilized according to the operator's reference or skill. Such bands have several clinical effects including suitability for proximal margin, reduction of micro-leakage, moisture-control against saliva and ease finishing and polishing. In this case report, orthodontic bands were utilized instead of matrix bands as a remedy for proximal restorations in both primary and permanent teeth and their clinical advantages are as follows. 1. Orthodontic bands showed superior marginal adaptation compared to conventional matrix bands and moisture-control against saliva was excellent. 2. While applying composite resin, deformation of restoration material was estimated to be insignificant due to he rigidity of the orthodontic bands. 3. Natural tooth contour of the orthodontic bands facilitates to reproduce proximal tooth contour of the restoration. 4. In general, pediatric dentists are accustomed to applying orthodontic bands and this may allow pediatric dentists to make proximal composite restorations more efficiently than other dental specialists.

  • PDF

Three dimensional finite element analysis of continuous and segmented arches with use of orthodontic miniscrews (교정용 미니스크류를 이용한 연속호선과 분절호선의 유한요소분석)

  • Lee, Eon-Hwa;Yu, Hyung-Seog;Lee, Kee-Joon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.237-254
    • /
    • 2011
  • Objective: The purpose of this study was to compare the displacement patterns shown by finite element analysis when the maxillary anterior segment was retracted from different orthodontic miniscrew positions and different lengths of lever arms in lingual continuous and segmented arch techniques. Methods: A three dimensional model was produced, the translation of teeth in both models was measured and individual displacement was calculated. Results: When traction was carried out from miniscrews in the palatal slope, lingual tipping of crowns and extrusion of the maxillary anterior segment were found in both continuous and segmented arches as the lever arms were made shorter. With miniscrews in the midpalatal suture area, the displacement patterns were similar to the palatal slope, but bodily movement of the upper incisors was observed in both continuous and segmented arches with the lever arm at 20 mm. When lever arms were longer, there was less extrusion of the incisors and more buccal displacement of the canines. Such displacement was shown less in the continuous arch than the segmented arch. The second premolar showed crown mesial tipping and intrusion, and the molars showed distal tipping in the continuous arch. The posterior segment was displaced three dimensionally in the segmented arch, but the amount of displacement was less than the continuous arch. Conclusions: It is recommended that lever arms of 20 mm in length be used for bodily movement of the anterior segment. Use of continuous or segmented arches affect the displacement patterns and induce differences in the amount of displacement.

A photoelastic Stress Analysis of Implant Prosthesis According to Fitness of Super structure (불량 적합 임플란트 보철물의 광탄성 응력 분석)

  • Lim, Hyun-Pil;Heo, Shin-Ok;Kim, Hong-Joo;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • To assess the stress distribution of implant prosthesis induced by intentional misfit using photoelastic model. Stress was measured at the surrounding bone after applying vertical load to the implant. Three implants were placed in each of three photoelastic resin blocks. No misfits were used for the control group, while for the experimental group $100{\mu}m$ misfit after cutting the crown was used. The photoelastic stress analysis was performed. In control group, stress concentration was not shown when the load was not applied, whereas stress concentration was shown only in the loaded part even when load was applied and the stress was distributed in anterior-posterior direction when applying a load in the middle. When intentional misfits were given, stress around the fixture was incurred when tightening the screw even if load was not applied. If the load was applied, stress was concentrated around the implants including areas where the load was applied. In particular, the prosthesis made of UCLA showed more stress concentration as compared with a conical abutment. In the UCLA case, concentration was shown from the apex following through the axis to the cervical area. Prosthesis with misfit makes the stress concentrated though the load was not applied and it induces even more severe stress concentration when the load was applied. This founding demonstrates the importance of the correct prosthesis production.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

Measurement and Within-tree Distribution of Larval Entrance and Adult Emergence Holes of Japanese Pine Sawyer, Monochamus alternatus(Coleoptera: Cerambycidae) (솔수염하늘소의 유충침입공과 성충탈출공의 측정과 소나무 내 분포)

  • 정영진;이상명;김동수;최광식;이상길;박정규
    • Korean journal of applied entomology
    • /
    • v.42 no.4
    • /
    • pp.315-321
    • /
    • 2003
  • Larval entrance and adult emergence holes of Japanese pine sawyer (Monochamus alternatus), primary vector of pinewood nematode (Bursaphelenchus xylophilus), were measured in dead pine logs from 1999 to 2002. Their distributions within pine log were also analyzed. More numbers of entrance and emergence holes were distributed on crown than trunk part as 56.2 and 27.7 holes/m$^2$, respectively Higher proportions of entrance (27.5%) and emergence holes (22.4%) were distributed on the log with 8 to 10 cm diameter; the larger or the smaller logs had fewer holes. Surface area of entrance hole was 65.8 $\textrm{mm}^2$ and diameter of emergence holes was 7.0 mm in average. Average depth of pupal chamber was 24.8 mm from surface to the bottom of the chamber, and its volume ranged from 200 to 2.000 ㎣ Average distance between entrance and emergence holes on bark surface was 3.3 cm. Gallery length from the beginning of entrance hole to the end of emergence hole was 46.2 mm.

Immediate implant placement into extraction sites with periapical lesions in the esthetic zone: a case report (치근단 병소를 가진 치아의 발치 후 즉시 임플란트 식립 및 보철을 통한 심미성 회복)

  • Yi, Jae-Young;Kim, Jee-Hwan;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • Esthetics is important in restoring maxillary anterior area. Alveolar bone resorption and loss of interdental papilla may be minimized by immediate implantation. Previous studies showed successful results with the immediate implantation in healthy extraction socket, while many of these studies objected the immediate implantation into extraction sites with periapical lesions. Recent studies, however, reported successful results of the immediate implantation into extraction sites with periapical lesions with careful debridement of extraction sockets and general medication of antibiotics prior to implantation. A 73-year-old female visited the department of Prosthodontics in ${\bigcirc}{\bigcirc}$ University Dental Hospital with the chief complaint of fallen post-core and crown on left maxillary incisor. Although the incisor was with vertical root fracture and periapical lesion, the immediate implantation following the extraction of tooth was planned. Thorough socket debridement, irrigation with chlorhexidine, and tetracycline soaking were followed by immediate implantation. The general medication of antibiotics (Moxicle Tab.$^{(R)}$, 375 mg) was prescribed before and after the surgery. Immediate provisional restoration was delivered two days after the surgery, and the definitive metal-ceramic restoration was placed about six months later after reproducing the emergence profile from the provisional restoration. This case presents satisfying result esthetically and functionally upto two years after the placement of prosthesis with the harmonious gingival line and no loss of marginal bone.