• Title/Summary/Keyword: Crouch gait

Search Result 2, Processing Time 0.017 seconds

Compensatory Strategy Observed in the Simulated Crouch Gait of Healthy Adults (정상인에서 쭈그림보행 시뮬레이션 시 관찰된 보상적 전략)

  • Kim, Tack-Hoon;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Kwon, Hyuk-Cheol;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.53-67
    • /
    • 2004
  • This simulation study investigated the characteristics of normal gait, $30^{\circ}$ crouch gait, $30^{\circ}$ crouch/equinus gait, $45^{\circ}$ crouch gait, $45^{\circ}$ crouch/equinus gait. The knee flexion angles were restricted using a specially designed orthosis. This study was carried out in a motion analysis laboratory of the National Rehabilitation Center. Fifteen healthy male subjects were recruited for the study. The purposes of this study were (1) to compare spatiotemporal parameters, kinematics, and kinetic variables in the sagittal plane among the different gait, (2) to investigate the secondary compensatory strategy, and (3) to suggest biomechanical physical therapy treatment methods. The pattern and magnitude observed in each condition were similar to those of normal gait, except the peak knee extension moment of the unrestricted ankle motion-crouch gait. However, the speed of the $45^{\circ}$ crouch gait was half that of a normal gait. The ankle joint moment in the crouch/equinus gait showed the double-bump pattern commonly observed in children with spastic cerebral palsy, and there was no significant difference in gait speed as compared with normal gait. The peak ankle plantar-flexor moment and ankle power generated during the terminal stance in the crouch/equinus conditions were reduced as compared with normal and $45^{\circ}$ crouch gaits (p<.05). The crouch/equinus gait at the ankle joint was an effective compensatory mechanism. Since ankle plantarflexion contracture can be exacerbated secondary to the ankle compensatory strategy in the crouch/equinus gait, it is necessary to increase the range of ankle dorsiflexion and the strength of plantarflexion simultaneously to decrease the abnormal biomechanical advantages of the ankle joint.

  • PDF

A Kinematic analysis on the treadmill gait of children with Down Syndrome (다운증후군 아동의 트레드밀 보행에 대한 운동학적 분석)

  • Oh, Seong-Geun;Yi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3834-3842
    • /
    • 2011
  • The purpose of this study is to analyze the kinematic characteristics of children with Down syndrome got congenitally joint laxity and muscle hypotonic. The subjects are boys with Down syndrome and don't have the other disabilities. We got three dimensional position data and then calculated spatiotemporal and kinematic variables during walking on treadmill used increasingly for gait analysis and training. In result, in order to overcome their gait instability due to their musculoskeletal characteristics they walked with hip, knee and ankle joints more flexed than the typical gait pattern, and on the propulsion phase they extend the lower limb joints less than the typical, result in propel the body less than. The reason is that the more is the propulsion by extending the joints, the greater is the reaction force from the ground on heel contact. This result is expected to be used to develop the training program for intensification of musculoskeletal system aim to improve the other musculoskeletal disabilities as well as Down syndrome.