• Title/Summary/Keyword: Crossflow Microfiltration

Search Result 18, Processing Time 0.02 seconds

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

Microfiltration Characteristics for Emulsified Oil in Water (에멀젼형 오일 수용액에 관한 정밀여과 특성)

  • ;;;Fane, Anthony G.
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.203-209
    • /
    • 1998
  • The cutting oil emulsion microfiltration was carried out on dead-end call and crossflow systems equipped with 0.22 $\mu$m GVHP Millipore and 0.2 m stainless steel Mott microfiltration membranes, respectivdy. The oil drop size in the emulsion was varied from 0.07 to 0.22 $\mu$m. Cake filtration(CFM) and standard pore blocking models(SPBM) were applied to predict the permeation flux. The permeation fluxes of 0.01 vol% oil emulsion followed CFM for dead-end system very well under the condition of 400 rpm and below 100 kPa. The SPBM was, however, suitable for the permeation flux at 400 rpm and above 150 kPa. The oil layer on the membrane surface was destroyed and reproduced repeatedly as operating pressure was suddenly changed from 60 to 200 kPa, and then returned to 60 kPa. Also, we estimated the critical entry pressure(CEP) which is changed from CFM to SPBM, and CEP for dead-end system was around 100 kPa. The CEP increased from around 100 to 150 kPa for the crossflow system as the oil concentration increased from 0.01 to 0.03 vol% when Reynolds number was 7080.

  • PDF

Study on Cake Resistance and Microfiltraion Performance of Rotating Membrane Filters (회전막 정밀여과기에서 케이크 저항과 여과성능에 대한 연구)

  • 박원철;최창균;김재진;박진용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.105-109
    • /
    • 1998
  • 1. Introduction : In microfiltration the transport, deposition and removal of particles control cake formation on a filter. In this connection a new model on cake formation, based on the wall shear stress, was tested here in comparison with experiments of fine particle slurry under Taylor-vortex flow. The model expresses the deposition process for particles as two first-order steps in series of mass transfer and adhesion, and their removal process as a linear relation to the wall shear stress. This embraces characteristics of both dead-end and crossflow filtration. The correlation resulting from fitting to experimental data represented the experimental data reasonably well. This study will be helpful in analyzing fouling in heat exchangers.

  • PDF

Improved Purification Process for Cholera Toxin and its Application to the Quantification of Residual Toxin in Cholera Vaccines

  • Jang, Hyun;Kim, Hyo-Seung;Kim, Jeong-Ah;Seo, Jin-Ho;Carbis, Rodney
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.108-112
    • /
    • 2009
  • A simplified method for the purification of cholera toxin was developed. The 569B strain of Vibrio cholerae, a recognized hyper-producer of cholera toxin, was propagated in a bioreactor under conditions that promote the production of the toxin. The toxin was separated from the bacterial cells using 0.2-${\mu}m$ crossflow microfiltration, the clarified toxin was passed through the membrane into the permeate, and the bacterial cells were retained in the retentate. The 0.2-${\mu}m$ permeate was then concentrated 3-fold and diafiltered against 10 mM phosphate buffer, pH 7.6, using 30-kDa crossflow ultrafiltration. The concentrated toxin was loaded onto a cation exchange column, the toxin was bound to the column, and most of the impurities were passed unimpeded through the column. The toxin was eluted with a salt gradient of phosphate buffer, pH 7.0, containing 1.0 M NaCl. The peak containing the toxin was assayed for cholera toxin and protein and the purity was determined to be 92%. The toxin peak had a low endotoxin level of $3.1\;EU/{\mu}g$ of toxin. The purified toxin was used to prepare antiserum against whole toxin, which was used in a $G_{M1}$ ganglioside-binding ELISA to determine residual levels of toxin in an oral inactivated whole-cell cholera vaccine. The $G_{M1}$ ganglioside-binding ELISA was shown to be very sensitive and capable of detecting as little as 1 ng/ml of cholera toxin.

A Study on the Opimization of Process and Operation Condition for Membrane System in Tap Water Treatment (분리막을 이용한 정수처리 System에서 처리공정 및 운전조건의 최적화에 관한연구)

  • 오중교
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.193-201
    • /
    • 1999
  • The object of study were the development of membrane process and the optimization of operation condition for membrane system, which was used the pre-treatment system of tap water treatment in steady of conventional process such as coagulation, sedimentation. The higher steady flux is very important factor, by a suitable pre-treatment and optimization of operating condition such as fouling control, crossflow and backwashing method, in membrane system. So, we were observed the effect of flux decline for membrane used by 4 type ultrafiltration(UF) membrane pre-treatment process, and optimized the operation condition of filtration system under various MWCO(Molecular weight cut-off), operation pressure, linear velocity and temperature to maintain higher flux. From these experiment, we were identified that UF process showed a slower flux decline rate and a higher flux recovery than microfiltration(MF) membrane. The water quality of UF permeate was better than that of MF, and was not effected pre-treatment process. In the operation condition, the rate of flux decline was diminished by a higher linear velocity and operation temperature, lower pressure.

  • PDF

Progresses and new perspectives of integrated operations for a sustainable industrial growth

  • Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.11-14
    • /
    • 1998
  • 1. Introduction : Research progresses in Chemistry and Chemical Engineering have been made during the last decades with important contributions to the industrial development and to the quality of our life. An interesting case is related to the membrane science and technology continuous impact to innovative processes and products, particularly appropriate for a sustainable industrial growth. Membrane operations have been familiar for many years to biologists and chemists working in their laboratorier or studying biological phenomena. Only recently engineers started to operate in' this area. The preparation of asymmetric CA membranes at University of California, Los Angeles in the early 60s is generally recognized as a crucial moment for membranology (1). Loeb and Sourirajan with their discovery of how to increase significantly the permeability of polymeric membranes without significant changes in their selectivity, made realistic the possibility of their use in large scale operations for desalting brackish and sea water by reverse osmosis and for various other molecular separations in different industrial areas. Reverse osmosis is today a well recognized basic unit operations, togheter with ultrafiltration, crossflow microfiltration,. nanofiltration, all pressure driven membrane processes. Already in 1992 more than 4 milIions m$^3$/day were the total capacity of RO desalination plants and in 1995 more than 180.000 m$^2$ of ultrafiltration membranes were installed for the treatment of wheys and milk (2) (3).

  • PDF

Visualization of Microfiltraton Membrane Fouling by High Speed Video System (고속 비디오 시스템을 이용한 정밀여과 막오염의 시각화)

  • 정건용;김래현
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.174-181
    • /
    • 2003
  • In this study the formation of the particle layer near the membrane surface was observed for the crossflow micro filtration module by the high speed video system. The microfiltration membrane of 0.2 {\mu}m$ nominal pore size and the 0.05 wt% solution of the polyacryl-copolymer particle distributed between 100 and 180 {\mu}m$ were used for the experiment. The feed rates were changed to 0.5, 0.75, 1.0, 1.25 and 1.5 cm/sec while the permeate rates were maintained at $20{\pm}3%$ of the feed rates, respectively, It was observed that the particles were accumulated rapidly on the membrane surface as the feed flow rate increased, but the particles were not accumulated at 0.5 cm/sec, Also, it was confirmed that almost all of the particles in the layer already formed during filtration were removed within 30 seconds as the feed flow rate increased to 1.88 cm/sec.

The Treatment of Heavy Metal Hydroxides by Crossflow-Microfiltration (정밀여과에 의한 중금속수산화물의 처리)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.151-165
    • /
    • 2002
  • In the treatment of the wastewater containing metals($Cu^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Cr^{3+}$) by using batch precipitation and flocculation followed by membrane filtration, permeate flux and removal efficiency were investigated according to by the effect of pH and coagulants, and the type of membranes used and pore size. It was found that it is most effective to use $0.45{\mu}m$-polysulfone membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of copper containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of zinc containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case of nickel containing wastewater, $0.2{\mu}m$ membrane and coagulant at the conditions of the pH of 8.0~8.5 for the case of chromic containing wastewater, and $0.2{\mu}m{\sim}0.45{\mu}m$ membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case mixture wastewater. The permeate flux could higher as to be used coagulants except for the case of copper containing wastewater.

  • PDF