• Title/Summary/Keyword: Cross-sharpened images

Search Result 3, Processing Time 0.015 seconds

Unsupervised Change Detection of KOMPSAT-3 Satellite Imagery Based on Cross-sharpened Images by Guided Filter (Guided Filter를 이용한 교차융합영상 기반 KOMPSAT-3 위성영상의 무감독변화탐지)

  • Choi, Jaewan;Park, Honglyun;Kim, Donghak;Choi, Seokkeun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.777-786
    • /
    • 2018
  • GF (Guided Filtering) is a representative image processing technique to effectively remove noise while preserving edge information in the digital image. In this paper, we proposed a unsupervised change detection method for the KOMPSAT-3 satellite image using the GF and evaluated its performance. In order to utilize GF for the unsupervised change detection, cross-sharpened images were generated based on GF, and CVA (Change Vector Analysis) was applied to the generated cross-sharpened images to extract the changed area in the multitemporal satellite imagery. Experimental results using KOMPSAT-3 satellite images showed that the proposed method can be effectively used to detect changed regions compared with CVA results based on existing cross-sharpened images.

Comparison of Change Detection Accuracy based on VHR images Corresponding to the Fusion Estimation Indexes (융합평가 지수에 따른 고해상도 위성영상 기반 변화탐지 정확도의 비교평가)

  • Wang, Biao;Choi, Seok Geun;Choi, Jae Wan;Yang, Sung Chul;Byun, Young Gi;Park, Kyeong Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Change detection technique is essential to various applications of Very High-Resolution(VHR) satellite imagery and land monitoring. However, change detection accuracy of VHR satellite imagery can be decreased due to various geometrical dissimilarity. In this paper, the existing fusion evaluation indexes were revised and applied to improve VHR imagery based change detection accuracy between multi-temporal images. In addition, appropriate change detection methodology of VHR images are proposed through comparison of general change detection algorithm with cross-sharpened image based change detection algorithm. For these purpose, ERGAS, UIQI and SAM, which were representative fusion evaluation index, were applied to unsupervised change detection, and then, these were compared with CVA based change detection result. Methodologies for minimizing the geometrical error of change detection algorithm are analyzed through evaluation of change detection accuracy corresponding to image fusion method, also. The experimental results are shown that change detection accuracy based on ERGAS index by using cross-sharpened images is higher than these based on other estimation index by using general fused image.

Unsupervised Change Detection for Very High-spatial Resolution Satellite Imagery by Using Object-based IR-MAD Algorithm (객체 기반의 IR-MAD 기법을 활용한 고해상도 위성영상의 무감독 변화탐지)

  • Jaewan, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • The change detection algorithms, based on remotely sensed satellite imagery, can be applied to various applications, such as the hazard/disaster analysis and the land monitoring. However, unchanged areas sometimes detected as the changed areas due to various errors in relief displacements and noise pixels, included in the original multi-temporal dataset at the application of unsupervised change detection algorithm. In this research, the object-based changed detection for the high-spatial resolution satellite images is applied by using the IR-MAD (Iteratively Reweighted- Multivariate Alteration Detection), which is one of those representative change detection algorithms. In additionally, we tried to increase the accuracy of change detection results with using the additional information, based on the cross-sharpening method. In the experiment, we used the KOMPSAT-2 satellite sensor, and resulted in the object-based IR-MAD algorithm, representing higher changed detection accuracy than that by the pixel-based IR-MAD. Also, the object-based IR-MAD, focused on cross-sharpened images, increased in accuracy of changed detection, compared to the original object-based IR-MAD. Through these experiments, we could conclude that the land monitoring and the change detection with the high-spatial-resolution satellite imagery can be accomplished efficiency by using the object-based IR-MAD algorithm.