• Title/Summary/Keyword: Cross-sections

Search Result 1,453, Processing Time 0.034 seconds

Measurement of Energy Dependent Neutron Capture Cross Sections of $^{197}Au$ in Energy Region from 0.1 eV to 10 keV using a Lead Slowing-down Spectrometer

  • Yoon, Jung-Ran
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.29-32
    • /
    • 2010
  • The neutron capture cross section of $^{197}Au$ has been measured relative to the $^{10}B(n,{\gamma})$ standard cross section by the neutron time-of-flight(TOF) method using a 46-MeV electron linear accelerator(linac) at the Research Reactor Institute, Kyoto University(KURRI). In order to experimentally prove the result obtained, the supplementary cross section measurement has been made from 0.1 eV to 10 keV using the Kyoto University Lead slowing-down spectrometer (KULS) coupling to the linac. The relative measurement by the TOF method has been normalized to the reference value(24.5 b) at 1 eV. The evaluated capture cross sections in JENDL/D-99 Dosimetry have been compared with the current measurements by the KULS experiments.

Design of Forming Rolls for Parts with a Symmetric U-type Cross-section that Varies Linearly and Symmetrically in the Longitudinal Direction (길이방향을 따라 선형 대칭적으로 변하는 좌우대칭 U형 단면을 가진 제품의 포밍 롤 설계)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.73-82
    • /
    • 2016
  • Recently, automobile industries have been developing many structural automotive parts made of thin, high-strength steel strips to produce safer and more environmentally friendly cars. The roll forming process has been considered one of the most efficient processes in manufacturing high-strength steel parts because it is a high-speed process that forms sheets in increments. However, most automotive parts vary longitudinally in their cross-sections. Therefore, it is difficult to apply the roll forming process to automotive parts made of high-strength steel. A variable section roll forming process has been proposed in recent studies. The rotational axes of the forming rolls are fixed, and the forming rolls have three-dimensional shape. As such, the cross-section of the part varies linearly along its length, and the angle between the bend line and longitudinal axis is less than 1 degree. Thus, the rate of cross-sectional variation along the length is relatively small. In this study, the rate of cross-sectional change along the length of a forming roll has been increased. Moreover, the angle between the bend line and longitudinal axis has been increased up to 15 degrees. The variable sections of the forming rolls have been designed for high strength steel parts with a symmetric u-type cross-section that varies linearly and symmetrically along the longitudinal axis.

Analysis of Laterally Loaded Pile-Bent Structure with Varying Cross-sectional Area (변단면 파일벤트 구조의 수평거동 분석)

  • Jeong, Sang-Seom;Sung, Chul-Gyu;Ko, Jun-Young;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • The load distribution and deformation of pile-bent structures are investigated using a numerical study. A numerical analysis that takes into account the effects of varying cross-sectional area was performed for different pier diameters, loading steps, and soil conditions. Through the comparison study, it is shown that the location of maximum bending moment is almost the same per each loading step, regardless of varying cross-sections. However, the member force (i.e., stress of pile material) has the largest value at the ground surface when the cross-section is changed. Based on the results obtained, it is found that the location of maximum member force influences highly the behavior of pile-bent structure with varying cross-sections for repair works.

Monte Carlo Calculation for Production Cross-Sections of Projectile's Isotopes from Therapeutic Carbon and Helium Ion Beams in Different Materials

  • Quazi Muhammad Rashed Nizam;Asif Ahmed;Iftekhar Ahmed
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.204-212
    • /
    • 2023
  • Background: Isotopes of the projectile may be produced along the beam path during the irradiation of a target by a heavy ion due to inelastic interactions with the media. This study analyzed the production cross-section of carbon (C) and Helium (He) projectile's isotopes resulting from the interactions of these beams with different materials along the beam path. Materials and Methods: In this study, we transport C and He ion beams through different materials. This transportation was made by the Monte Carlo simulation. Particle and Heavy Ion Transport code System (PHITS) has been used for this calculation. Results and Discussion: It has been found that 10C, 11C, and 13C from the 12C ion beam and 3He from the 4He ion beam are significant projectile's isotopes that have higher flux than other isotopes of these projectiles. The 4He ion beam has a higher projectile's isotope production cross-section along the beam path, which adds more impurities to the beam than the 12C ion beam. These projectile's isotopes from both the 12C and 4He ion beams have higher production cross-sections in hydrogenous materials like water or polyethylene. Conclusion: It is important to distinguish these projectile's isotopes from the primary beam particles to obtain a precise and accurate cross-section result by minimizing the error during measurement with a nuclear track detector. This study will show the trend of the production probability of projectile's isotopes for these ion beams.

Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data

  • Zhou, Guang-Dong;Yi, Ting-Hua;Chen, Bin;Zhang, Huan
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.469-488
    • /
    • 2015
  • Thermal loads, especially thermal gradients, have a considerable effect on the behaviors of large-scale bridges throughout their lifecycles. Bridge design specifications provide minimal guidance regarding thermal gradients for simple bridge girders and do not consider transversal thermal gradients in wide girder cross-sections. This paper investigates the three-dimensional thermal gradients of arch bridge girders by integrating long-term field monitoring data recorded by a structural health monitoring system, with emphasis on the vertical and transversal thermal gradients of wide concrete-steel composite girders. Based on field monitoring data for one year, the time-dependent characteristics of temperature and three-dimensional thermal gradients in girder cross-sections are explored. A statistical analysis of thermal gradients is conducted, and the probability density functions of transversal and vertical thermal gradients are estimated. The extreme thermal gradients are predicted with a specific return period by employing an extreme value analysis, and the profiles of the vertical thermal gradient are established for bridge design. The transversal and vertical thermal gradients are developed to help engineers understand the thermal behaviors of concrete-steel composite girders during their service periods.

A Simple Method of Obtaining "Exact" Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 정확한 고유진동수를 얻기 위한 간편 해석법)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.9-12
    • /
    • 2001
  • Composite materials can be used economically and efficiently in broad civil engineering applications when standards and processes for analysis, design, fabrication, construction and quality control are established. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special othotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by the author in 1974 Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with various boundary conditions with/without shear deformation effects and reported at several international conferences including the Eighth Structures Congress of American Society of Civil Engineers in 1990. In this paper, the result of application of this method to the special orthotropic plates with various boundary condition is presented.

  • PDF

Investigation of Shape Parameters for a Profile with Variable-cross Sections Produced by Flexible Roll Forming (가변롤성형 공정을 이용한 단면이 가변하는 프로파일의 형상변수 분석에 관한 연구)

  • Park, J.C.;Cha, M.W.;Kim, D.G.;Nam, J.B.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.369-375
    • /
    • 2014
  • Flexible roll forming allows profiles to have variable cross-sections. However, the profile may have some shape errors, such as, warping which is a major defect. The shape error is induced by geometrical deviations in both the concave zone and the convex zone. In the current study, flexible roll forming was modeled with FE simulations to analyze the shape error and the longitudinal strain distribution along the flange section over the profile. A distribution of analytically calculated longitudinal strains was used to develop relationships between the shape error and the longitudinal strain distribution as a function of the defined shape parameters for the profile. The FE simulations showed that the shape error is primarily affected by the deviations between the distribution of analytically calculated longitudinal strain and the longitudinal strain distribution of the profile. The results show that the shape error can be controlled by designing the shape parameters to control the geometrical deviations at the flange section in the transition zones.