• 제목/요약/키워드: Cross-pressure

검색결과 1,439건 처리시간 0.029초

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

요통 환자의 요추 주변 근육 단면적과 신체안정성(Stability), 체중심(Center of Pressure)과의 관련성 : 동적평형검사(Tetrax)를 중심으로 (The Association between Cross-section of Lumbar Regional Muscle analyzed by MRI and Stability, Center of Pressure assessed by Tetrax)

  • 성익현;이갑수;정재훈;김원우;조창영;최철우;하인혁
    • 척추신경추나의학회지
    • /
    • 제8권2호
    • /
    • pp.39-46
    • /
    • 2013
  • Objectives : To identify the association between cross-sectional area of lumbar regional muscle and stability(ST), center of pressure(COP) assessed by tetrax. Methods : Patients(n=55) who had taken L-SPINE MRI and Tetrax(Sunlight, Israel) were analyzed retrospectively. To evaluate the cross-sectional area of lumbar regional muscle, L-SPINE MRI was used. Data of ST, COP were accumulated by using dynamic equilibrium analysis by Tetrax. Of the lumbar regional muscles, the Psoas muscles and the Paraspinalis muscles were examined. Using Pearson correlation, we analyzed COP, ST and the difference between the cross-sectional area of lumbar regional muscles. Results : The variance of cross-sectional area of both sides of Psoas muscle and COP had moderate positive correlation(r=0.621). Between variance of cross-sectional area of both sides of Paraspinalis and lumbar regional muscle and COP there was low positive correlation(r=0.287, r=0.329) ST also had low correlation with variance of cross-sectional area of both sides of Psoas muscle. Conclusion : The variance of cross-sectional area between both sides of Psoas muscle had moderate correlation with COP.

  • PDF

두 연속 덕트를 전파하는 압축파의 수치해석적 연구 (Numerical study of compression waves passing through two-continuous ducts)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.

고속제트 플럼에서의 기저압력 특성 (Characteristics of the Base Pressure in High-Speed Jet Plume)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.193-195
    • /
    • 2011
  • An abrupt increase of duct cross-section is frequently encountered in pressure reducing devices, valves of internal combustion engines and in gas pipelines. Supersonic flow in a rectangular duct passing an abrupt increase of cross-section is studied numerically. The behavior of base pressure of the dead-air region at sudden enlargement of the duct is clarified. This investigation concerns the determination of the base pressure, which is independent of the size of the enlarged part. Several flow patterns are identified with different enlargements according to the ratio between the downstream ambient pressure and the upstream reservoir pressure. Base pressure and the resulting shock-structure are highly depending on the size of duct enlargement. For a given duct, base pressure tends to minimum for a particular pressure ratio. In addition, the locations of secondary separation and reattachment points of the jet plume are found with respect to different duct enlargements.

  • PDF

The buckling of a cross-ply laminated non-homogeneous orthotropic composite cylindrical thin shell under time dependent external pressure

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.661-677
    • /
    • 2002
  • The subject of this investigation is to study the buckling of cross-ply laminated orthotropic cylindrical thin shells with variable elasticity moduli and densities in the thickness direction, under external pressure, which is a power function of time. The dynamic stability and compatibility equations are obtained first. These equations are subsequently reduced to a system of time dependent differential equations with variable coefficients by using Galerkin's method. Finally, the critical dynamic and static loads, the corresponding wave numbers, the dynamic factors, critical time and critical impulse are found analytically by applying a modified form of the Ritz type variational method. The dynamic behavior of cross-ply laminated cylindrical shells is investigated with: a) lamina that present variations in the elasticity moduli and densities, b) different numbers and ordering of layers, and c) external pressures which vary with different powers of time. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

Flow Analysis of Profile Extrusion by a Modified Cross-sectional Numerical Method

  • Seo, Dongjin;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.103-110
    • /
    • 2000
  • Flow analysis of profile extrusion is essential for design and production of a profile extrusion die. Velocity, pressure, and temperature distribution in an extrusion die are predicted and compared with the experimental results. A two dimensional numerical method is proposed for three dimensional analysis of the flow field within the profile extrusion die by applying a modified cross-sectional numerical method. Since the cross-sectional shape of the die is varied gradually, it is assumed that the pressure is constant within a cross-sectional plane that is perpendicular to the flow direction. With this assumption, the velocity component in the cross-sectional direction is neglected. The exact cross-sectional shape at any position is calculated based on the geometry of standard cross-sections. The momentum and energy equations are solved with proper boundary conditions at a cross-section and then the same calculation is carried out for the next cross-section using the current calculated values. An L-shaped profile extrusion die is produced and employed for experimental investigation using a commercially available polypropylene. Numerical prediction for the varying cross-sectional shape provides better results than the previous studies and is in good agreement with the experimental results.

  • PDF

두 연속 터널을 전파하는 압축파의 실험적 연구 (Experimental study of compression waves propagating into two-continuous tunnels)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

Circadian Biorhythmicity in Normal Pressure Hydrocephalus - A Case Series Report

  • Herbowski, Leszek
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권1호
    • /
    • pp.151-160
    • /
    • 2022
  • Continuous monitoring of intracranial pressure is a well established medical procedure. Still, little is known about long-term behavior of intracranial pressure in normal pressure hydrocephalus. The present study is designed to evaluate periodicity of intracranial pressure over long-time scales using intraventricular pressure monitoring in patients with normal pressure hydrocephalus. In addition, the circadian and diurnal patterns of blood pressure and body temperature in those patients are studied. Four patients, selected with "probable" normal pressure hydrocephalus, were monitored for several dozen hours. Intracranial pressure, blood pressure, and body temperature were recorded hourly. Autocorrelation functions were calculated and cross-correlation analysis were carried out to study all the time-series data. Autocorrelation results show that intracranial pressure, blood pressure, and body temperature values follow bimodal (positive and negative) curves over a day. The cross-correlation functions demonstrate causal relationships between intracranial pressure, blood pressure, and body temperature. The results show that long-term fluctuations in intracranial pressure exhibit cyclical patterns with periods of about 24 hours. Continuous intracranial pressure recording in "probable" normal pressure hydrocephalus patients reveals circadian fluctuations not related to the day and night cycle. These fluctuations are causally related to changes in blood pressure and body temperature. The present study reveals the complete loss of the diurnal blood pressure and body temperature rhythmicities in patients with "probable" normal pressure hydrocephalus.

등/부등피치 횡류홴의 유동 소음 특성 (Flow Induced Noise Characteristics of the Cross Flow Fan with Uniform/Random Pitch Blades)

  • 조용;문영준;박진무
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.621-626
    • /
    • 2001
  • The flow induced noise of the cross-flow fan with uniform/random pitch blades is predicted by computational methods. With the time dependent surface pressure data obtained by solving the incompressible Navier-Stokes equations in moving coordinates, the acoustic pressure is predicted by the Ffowcs Williams-Hawkings equation. The positions of the blade noise source are identified through an investigation of the acoustic pressure history induced by one blade, and it is confirmed that the dominant noise source is near the stabilizer. Since the acoustic pressure of the random pitch fan fluctuates according to the blade passin, the dominant BPF noise of the uniform pitch fan is modulated into some reduced discrete noises which have multiples of a 50Hz difference from BPF.

  • PDF

정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구(II);단면적 및 개도 변화 (Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (II);Influence of the Cross-Sectional-Area and Opening Ratio)

  • 신창훈;하종만;이철구;허재영;임지현;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1454-1459
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. When it is under working, the accurate analysis of the flow properties is so difficult. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done according to the variations of the opening ratio or cross-sectional area and the detail examinations and considerations of the pressure regulator as a pipeline network elements have been carried. Finally the flow-flied distributions and critical-flow-characteristics have been presented in detail and the critical flow phenomena and the relation to the opening ratio or cross-sectional-area ratio have been studied.

  • PDF