• Title/Summary/Keyword: Cross-member

Search Result 359, Processing Time 0.03 seconds

Effect of Cross-Sectional Dimension on the Shrinkage Property of Korean Red-Pine Wood (소나무재의 단면치수에 따른 수축률 특성)

  • Hwang, Kweonhwan;Park, Beyung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • Red pine (Pinus densiflora) has been used for structural wood members of Korean traditional residence (HANOK) and historic wooden structures. For these constructions, generally, natural drying has conducted for long time; however, unless drying is conducted sufficiently, it could cause several drying defects such as check or warping. Shrinkage changes of red pine species for small clear specimens and big-size specimens according to the conditions of moisture contents, were examined. For the estimation of volumetric shrinkage at a special moisture content, it was more precise to divide the range of moisture contents into two groups, green to air-dry and air-dry to oven-dry. The volumetric shrinkage had no difference with specimen sizes in sapwood, but decreased as specimen size increased in heartwood.

Analysis of Long-Term Behaviors of Prestressed Concrete Structures (프리스트레스트 콘크리트 구조물의 장기거동 해석)

  • Kim, Woon-Hak;Hu, Man-Moo;Kim, Tae-Hoon;Choi, Jeong-Ho;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 2002
  • In the prestressed concrete structures, stresses are gradually redistributed with time due to the creep and shrinkage of concrete and the stress relaxation of prestressed steel. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete structures considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. Analytical studies for different examples of prestressed concrete structures have been performed to demonstrated the capabilities and practical applicabilities of the developed program.

Protection of Consumer Privacy in Electronic Commerce -Focused on On-line Monitoring Survey of Electronic Commerce Firms- (전자상거래에 있어서 소비자 프라이버시 보호에 관한 연구 -인터넷 전자상거래업체의 온라인모니터링조사를 중심으로-)

  • Kim, Hea-Seon;Seo, Min-Kyo;Chun, Cheong-Ghi
    • International Commerce and Information Review
    • /
    • v.6 no.2
    • /
    • pp.219-242
    • /
    • 2004
  • This study is conducted to find out whether companies which use electronic commerce for their business are collecting the least personal information. of consumers that are necessary for providing electronic commerce services to consumers. Investigators visited website of 799 electronic commerce companies, and checked out the personal informations of consumers that were asked when they join the site as a member. The collected data were analyzed with frequency, percentage, and cross-tab analysis using SPSS program. Generally most electronic commerces required more personal information of consumers than necessary for providing their services to consumers. These phenomena are partly due to the fact that regulations regarding consumer privacy in electronic commerce are advisory rather than mandatory at present. Therefore, it is suggested that mandatory regulation which makes companies poot their identification within a certain area of their web page has to enforced for the protection of consumer privacy in electronic commerce. And it would be more efficient if consumers are consistently educated about self protection guideline regarding personal information in using electronic commerce in addition to a mandatory regulation.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected to Axial Force and Biaxial Bending (2축 휨과 축력을 동시에 받는 철근콘크리트 기둥에 대한 실험적 연구)

  • 김진근;이상순;이수곤;김선영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.55-62
    • /
    • 1999
  • When stress is beyond elastic limit or cracks occur in a reinforced concrete member subjected to axial force and biaxial bending, curvature about each principal axis of uncracked section is influenced by axial force and bending moments about both major and minor principal axes. It is mainly due to the translation and rotation of principal axes of the cross section after cracking. Recently, by considering these effects, a numerical method predicting the behavior of concrete columns subjected to axial force and biaxial bending was proposed. In this study, in order to verify the proposed numerical method and investigate the effects of cracking on the behavior of reinforced concrete columns, a series of tests were carried out for 16 tied reinforced concrete columns with 100×100 mm square and 200×100 mm rectangular sections under various loading conditions. The angle between the direction of eccentricity and the major principal axis of uncracked section were 0, 30, 40° for the square section and 0, 30, 45, 60, 90° for the rectangular section, respectively. A comparison between numerical predictions and test results shows good agreements in ultimate loads, axial force-lateral deflection relations, and lateral deflection trajectories. It is also found, in this limited investigation, that the ACI's moment magnifier method is conservative in both uniaxial and biaxial loading conditions.

Nonlinear analysis of cable-stayed spatial latticed structures

  • Zhou, Dai;Liu, Hongyu;Jin, Bo
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.415-436
    • /
    • 2003
  • The combination of spatial latticed structures (hereafter SLS) and flexible cables, the cable-stayed spatial latticed structures (hereafter CSLS) can cross longer span. According to variation principle, a novel geometric nonlinear formulation for 3-D bar elements considering large displacement and infinitesimal rotation increments with second-order precision is developed. The cable nonlinearity is investigated and it is taken that the secant modulus method can be considered as an exact method for a cable member. The tower column with which the cables link is regarded as a special kind of beam element, and, a new simplified stiffness formulation is presented. The computational strategies for the nonlinear dynamic response of structures are given, and the ultimate load carrying capacities and seismic responses are analyzed numerically. It is noted that, compared with corresponding spatial latticed shells, the cable-stayed spatial latticed shells have more strength and more stiffness, and that the verical seismic responses of both CSLS and CLS are remarkably greater than the horizontal ones. In addition, the computation shows that the stiffness of tower column influences the performance of CSLS to a certain extent and the improvement of structural strength and stiffness of CSLS is relevant not only to cables but also to tower columns.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Support System over the Lifecycle: A Cross-Country Comparison (생애주기별 지원체계에 관한 국가 간 비교연구)

  • Lee, Sang-Hyop
    • KDI Journal of Economic Policy
    • /
    • v.35 no.1
    • /
    • pp.33-61
    • /
    • 2013
  • I describe the complex support systems around the world, focusing on their importance for economic growth and fiscal sustainability. Familial transfers for old age support are somewhat significant in some Asian economies including Korea, although they deteriorate quite rapidly. Public transfer systems are less significant in Korea compared with most OECD member countries. This is important because Korea has had the opportunity to develop sustainable systems less encumbered by obligations made to current and future generations. Relying on accumulated assets rather than transfers helped countries create capital-intensive economies that can maintain standards of living. This is true for Korea, but the question of how the labor and capital market will respond to the rapidly changing social welfare system remains as a critical question.

  • PDF

Development of Automated Optimum Design Program Considering the Design Details (세부설계사항을 고려한 자동최적설계 프로그램 개발)

  • Chang, Chun Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The primary objective of this paper is to develop optimal algorithms of reinforced concrete frame structural systems by the limit state design(CP 1110) and to look into the possibility of detailed design of these structural systems. The structural formulation is derived on the finite element method. The objective of optimization of a reinforced structure for a specified geometry is mainly to determine the optimum cross-sectional dimensions of concrete and the area of the various sizes of the reinforcement required for each member. In addition to the detail s such as the amount of web reinforcement, cutoff points of longitudinal reinforcedments etc. are also considered as design variables. In this study, the method of "Generalized Reduced Gradient, Rounding and with Neighborhood search" and "the Sequential Linear Programming" are employed as an analytical method of nonlinear optimization.

  • PDF

Finite Element Analysis of Inelastic Behavior of SRC Composite Piers (SRC 합성교각의 비탄성거동에 대한 유한요소해석)

  • Shim, Chang-Su;Han, Jung-Hoon;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames

  • Izadpanaha, Mehdi;Habibi, AliReza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.169-188
    • /
    • 2015
  • There are two types of nonlinear analysis methods for building frameworks depending on the method of modeling the plastification of members including lumped plasticity and distributed plasticity. The lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements. The distributed plasticity method discretizes the structural members into many line segments, and further subdivides the cross-section of each segment into a number of finite elements. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation to capture the variation of the section flexibility, and combine them to determine the element stiffness matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried out and the linear flexibility models used in the elements are compared with the real ones. It is shown that the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be lead to incorrect nonlinear responses in some situations.