• Title/Summary/Keyword: Cross-member

Search Result 358, Processing Time 0.029 seconds

Numerical method for biaxially loaded reinforced and prestressed concrete slender columns with arbitrary section

  • Lou, T.J.;Xiang, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.587-601
    • /
    • 2008
  • In this study, a numerical procedure based on the finite element method for materially and geometrically nonlinear analysis of reinforced and prestressed concrete slender columns with arbitrary section subjected to combined biaxial bending and axial load is developed. In order to overcome the low computer efficiency of the conventional section integration method in which the reinforced concrete section is divided into a large number of small areas, an efficient section integration method is used to determine the section tangent stiffness. In this method, the arbitrary shaped cross section is divided into several concrete trapezoids according to boundary vertices, and the contribution of each trapezoid to section stiffness is determined by integrating directly the trapezoid. The space frame flexural theory is utilized to derive the element tangent stiffness matrix. The nonlinear full-range member response is traced by an updated normal plane arc-length solution method. The analytical results agree well with the experimental ones.

Optimum Design of Welded Plate Girder Bridges by Genetic Algorithm (유전자 알고리즘에 의한 용접형 판형교의 단면 최적설계)

  • Lee Hee Up;Lee Jun S.;Bang Choon seok
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.510-515
    • /
    • 2003
  • The main objective of this paper is to propose the optimal design method of welded plate girder bridges using genetic algorithm. The objective function considered is the total weight of the welded plate girder. The behavior and design constraints are formulated based on the Korean Railroad Bridge Design Code and DIC Code. Continuous design variables are used to define the cross-sectional dimensions of the member. The GAs (genetic algorithm) is used to solve the nonlinear programming problem. Several examples of minimum weight design are solved to illustrate the applicability of the proposed minimization algorithm. From the results of application examples, the optimum design of welded plate girder is successfully accomplished. Therefore, the proposed algorithm in this paper may be used efficiently and generally for the optimum design of welded plate girders.

  • PDF

A simplified dynamic analysis for estimation of the effect of rotary inertia and diaphragmatic operation on the behaviour of towers with additional masses

  • Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.277-288
    • /
    • 2000
  • The present paper, deals with the dynamic analysis of a thin-walled tower with varying cross-section and additional masses. It, especially, deals with the effect of the rotary inertia of those masses, which have been neglected up to now. Using Galerkin's method, we can find the spectrum of the eigenfrequencies and, also, the shape functions. Finally, we can solve the equations of the problem of the forced vibrations, by using Carson-Laplace's transformation. Applying this method on a tall mast with 2 concentrated masses, we can examine the effect of the rotary inertia and the diaphragmatic operation of the above masses, on the 3 first eigenfrequencies.

Chord bearing capacity in long-span tubular trusses

  • Kozy, B.;Boyle, R.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.103-122
    • /
    • 2006
  • The capacity of tubular truss chords subjected to concentrated reaction forces in the vicinity of the open end (i.e., the bearing region) is not directly treated by existing design specifications; although capacity equations are promulgated for related tubular joint configurations. The lack of direct treatment of bearing capacity in existing design specifications seems to represent an unsatisfactory situation given the fact that connections very often control the design of long-span tubular structures comprised of members with slender cross-sections. The case of the simple-span overhead highway sign truss is studied, in which the bearing reaction is applied near the chord end. The present research is aimed at assessing the validity of adapting existing specifications' capacity equations from related cases so as to be applicable in determining design capacity in tubular truss bearing regions. These modified capacity equations are subsequently used in comparisons with full-scale experimental results obtained from testing carried out at the University of Pittsburgh.

Fire Resistance Performance of High Strength-Light Weight Concrete (고강도를 적용한 1종 경량골재 콘크리트의 내화특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.749-752
    • /
    • 2005
  • Normally, the degradation of concrete member exposed to fire is largely dependent on the fire scale and fire condition. With all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Thus, this study is concerned with experimentally investigating fire resistance of high strength-light weight concrete. From the test result, high strength-light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

Strength Characteristics of Ultra High Performance Concrete at early age

  • Kim, Sung-Wook;Park, Jung-Jun;Ryu, Guem-Sung;Koh, Kyoung-Taek;Hong, Ki-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.563-564
    • /
    • 2009
  • Ultra-High Performance Concrete (UHPC) compared to normal concrete is exhibiting extremely high strength characteristics with compressive strength and tensile strength reaching 200MPa and 15MPa, respectively. The mechanical characteristics of UHPC can be thus exploited advantageously in the construction of structure through the reduction of the cross-sectional area and fabrication of slim and light-weight of the structural members. In the case where the structural member is made of UHPC, the occurrence of crack can be prevented by releasing the restraint provided by the form in due time. This research performs parametric study of the failure characteristics of concrete such as failure energy and softening curve suggested by the viscous crack model approximating the failure of concrete. The scope of this research contains the results of tests performed to investigate the strength of UHPC during early elapsed time.

  • PDF

Amine Oxidase Activity of the Human Lysyl Oxidase-Like 3 (LOXL3) Protein

  • Kim Young-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.185-190
    • /
    • 2006
  • Lysyl oxidase (LOX) catalyzes the lysine-derived cross-links of fibrillar collagens and elastin in the extracellular matrix. Recent molecular cloning has revealed existence of a LOX family consisting of LOX and four lysyl oxidase-like proteins (LOXL, LOXL2, LOXL3 and LOXL4). Pathological conditions associated with impaired LOX activity in several heritable and acquired disorders lead to severe structural and functional abnormalities of cardiovascular tissues, such as occlusion of coronary arteries and aneurysms, suggesting an essential role for the LOX family proteins in the maintenance of the cardiovascular system. However, the specific roles of the lysyl oxidase-like proteins in normal and pathological conditions of the cardiovascular tissues have not been established yet. Here, I report that LOXL3, a novel member of the LOX family, is predominantly expressed in the aorta, with an amine oxidase activity toward collagen and elastin, suggesting an essential role of LOXL3 in the development and maintenance of the aorta.

  • PDF

Stress Analysis of Large Commercial Vehicle Frames with Bolted Joints (볼트 체결된 대형 상용차 프레임의 응력해석)

  • Yong-Kuk Park;Jin-Gon Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2004
  • Structural failures, such as crack initiation, often arise near the bolted parts of the side member and trunnion bracket in some commercial vehicles. The purpose of this paper is: 1) establishment of a simple and practical bolted joint modelling technique and 2) determination of the key design variables for design improvement based on numerical experiments. Once the bolted joint modelling technique is established through experimental verification, the key design variables must be identified in order to alleviate the level of the stress concentration near the problem region. Numerical results indicate that the torsional rigidity of the frame cross-section should be increased to reduce the level of the maximum stress at the actual crack initiation location.

A Study on the Collapse Characteristics of Thin-walled Structural Members for Automobiles Under Axial Compression Load (차체구조용 박육부재의 압궤특성에 관한 연구)

  • 김정호;임성훈;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.1-14
    • /
    • 1997
  • In this paper, collapse test of thin-walled structural member widely used for automobiles is carried out under static compression load to observe the effects of cross- sectional shape and material on the energy absorbing capacity in the viewpoint of cras- hworthiness. Specimens tested consist of two sorts(Aluminium, CFRP) and configur- ations(Circular, Square) with variation in thickness. Also, comparisons of Al circular and square specimens are made to find the influence of difference in shape on the energy absorbing capability according as the thickness of specimen varies.

  • PDF

The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle (알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계)

  • 김정호;김범진;허승진;김민수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.