• Title/Summary/Keyword: Cross-hardening

Search Result 62, Processing Time 0.027 seconds

Investigation of anomalous hardening in NiAl Single crystals at intermediate temperatures (중간온도 영역에서의 NiAl 단결정 이상 경화거동에 대한 연구)

  • Yang Chulho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1390-1393
    • /
    • 2005
  • The hardening model based on the dislocation mechanics is employed to study the experimentally observed high tensile elongations of NiAl along the [110] orientation at intermediate temperatures. In the hardening model proposed, a mobility of dislocation is assumed to be restricted to glide through the slip plane by forest dislocation and thermally activated cross-slip event. Overall deformation behavior of NiAl was greatly influenced by temperature-dependent dislocation mobility that both experimental and simulated yield stresses decreased as temperature increased. The results of simulation showed anomalous hardening behaviors analogous to those of experiment at certain circumstances. This behavior occurred due to the hardening contributions generated by cross-slip events that disable the dislocation motion in the primary slip systems. By comparing simulation results with experiments, it is confirmed that the proposed hardening model can represent anomalous tensile elongations due to the hardening by forest dislocations and cross-slip events.

  • PDF

Springback FE modeling of titanium alloy tubes bending using various hardening models

  • Shahabi, Mehdi;Nayebi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.369-383
    • /
    • 2015
  • In this study, effect of various material hardening models based on Holloman's isotropic, Ziegler's linear kinematic, non-linear kinematic and mixture of the isotropic and nonlinear kinematic hardening laws on springback prediction of titanium alloy (Ti-3Al-2.5V) in a tube rotary draw bending (RDB) process was investigated with presenting the keynotes for a comprehensive step by step ABAQUS simulation. Influence of mandrel on quality of the final product including springback, wall-thinning and cross-section deformation of the tube was investigated, too. Material parameters of the hardening models were obtained based on information of a uniaxial test. In particular, in the case of combined iso-nonlinear kinematic hardening the material constants were calibrated by a simple approach based on half-cycle data instead of several stabilized cycles ones. Moreover, effect of some material and geometrical parameters on springback was carried out. The results showed that using the various hardening laws separately cannot describe the material hardening behavior correctly. Therefore, it is concluded that combining the hardening laws is a good idea to have accurate springback prediction. Totally the results are useful for predicting and controlling springback and cross-section deformation in metal forming processes.

Evaluation of Mechanical Properties of AZ31B for Sheet Metal Forming at Warm and High Temperature (온간, 열간 판재 성형을 위한 AZ31B의 기계적 성질 평가)

  • Choo D. K.;Kim W. Y.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.256-259
    • /
    • 2004
  • In the present study, AZ31B sheets has a bad formability in room temperature, but the formability is improved significantly as increasing the temperature because of rolled magnesium alloy sheet has a hexagonal closed packed structure (HCP) and a plastic anisotropy. In this paper, after tensile test in various temperatures, strain rate, show the tensile mechanical properties, yield and ultimate strength, K-value, work hardening exponent(n), strain rate sensitivity(m). As temperature increased, yield, ultimate strength and K-value, work hardening exponent(n) are decreased but strain rate sensitivity(m) is increased. As cross-head-speed increased, yield, ultimate strength and K-value, work hardening exponent(n) are increased. And according to the temperature, how change the plastic anisotropy factor R. In addition, we observed how temperatures and cross-head-speed effect on microstructure.

  • PDF

The Study of Roll-forming Technology for UHSS Hydroformed Parts (UHSS 하이드로포밍 개발을 위한 박육관의 롤 포밍 기술 연구)

  • Park, Sungpill;Kwon, Yongjai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In the automotive industry, it is required to reduce weight of the car and improve fuel efficiency. Competitive pricing is also a very important issue. That's why application of welded steel tube is increasing in order to produce a vehicle with a competitive price. Also, hydroforming technology is asking more and more for thinner tubing to realize to a lighter vehicle design. Steel tube is produced through a multi-stage process called roll forming. In that case, bucking and work hardening should be considered key forming technology is to prevent buckling and minimize work hardening during steel tubing for hydroforming To prevent buckling, it is required to optimize forming process in order to minimize stretching in edge sections and hold tightly cross-section during welding. And to minimize work hardening, it is needed to know the proper process to avoid reforming.

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

Development on Steel Pipe for Hydroforming by Roll Forming Analysis (롤 성형 해석을 통한 하이드로포밍 전용 강관 개발)

  • 이봉열;조종래;문영훈;송병호;박중호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.229-232
    • /
    • 2003
  • In the roll forming process, a sheet or strip of metal is continuously and progressively formed into a desired cross-sectional profile by feeding it through a series of forming roll. Accordingly, it is important to maintain the material properties of the initial sheet and deform uniformly during the roll forming. The roll forming process was estimated in consideration of some factors such as material properties, strip thickness, roll diameter, roll velocity, and the deformation of the material that influence the forming length. The hydroforming technology has been recognized as a new technique in manufacturing industry, especially in automotive industry. The formed pipe in used in hydroforming process is manufactured by the roll forming. The formability during hydroforming is very sensitive to the state of pipes which are made by roll forming. Particularly the amount of hardening during roll forming affects the formability. Therefore, it is necessary to design the optimum roll flower to reduce the local hardening. In this paper, optimum roll flower which has uniform strain distribution through sheet width was obtained by comparing strain distribution in various roll flower. Finite element analysis(FEA) is performed to estimate the strain distribution related to hardening by roll forming. A numerical analysis is carried out by SHAPE-RF.

  • PDF

Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation (가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동)

  • Yu, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections

  • Theofanous, M.;Gardner, L.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.73-92
    • /
    • 2012
  • The effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel plated cross-sections is investigated in this paper. The focus of the research lies in cross-sections failing by local buckling; member instabilities, distortional buckling and interactions thereof with local buckling are not considered. The cross-sections investigated include rectangular hollow sections (RHS), I sections and parallel flange channels (PFC). Based on previous finite element investigations of structural stainless steel stub columns, parametric studies were conducted and the ultimate capacity of the aforementioned cross-sections with a range of element slendernesses and aspect ratios has been obtained. Various design methods, including the effective width approach, the direct strength method (DSM), the continuous strength method (CSM) and a design method based on regression analysis, which accounts for element interaction, were assessed on the basis of the numerical results, and the relative merits and weaknesses of each design approach have been highlighted. Element interaction has been shown to be significant for slender cross-sections, whilst the behaviour of stocky cross-sections is more strongly influenced by the material strain-hardening characteristics. A modification to the continuous strength method has been proposed to allow for the effect of element interaction, which leads to more reliable ultimate capacity predictions. Comparisons with available test data have also been made to demonstrate the enhanced accuracy of the proposed method and its suitability for the treatment of local buckling in stainless steel cross-sections.

Nominal Flexural Strength Considering Strain-hardening Effect of HSB600 Steel for Composite I-girders in Positive Bending (HSB600 강재의 변형-경화를 고려한 강합성 I-거더의 정모멘트부 공칭휨강도)

  • Lim, Ji Hoon;Choi, Dong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • This paper proposes nominal flexural strength considering strain-hardening effect of HSB600 high performance steel for compact composite I-girders in positive bending. Unlike conventional steels, HSB600 undergoes strain-hardening just after yielding without going through yield plateau. However, because the nominal flexural strength specified in domestic and foreign bridge design specifications has been developed for the conventional steel composite girders, the nominal flexural strength does not appropriately consider the strain-hardening of HSB600. Therefore, plastic moment considering a strain-hardening is proposed so as to consider effect of the strain-hardening of HSB600 on flexural strength and then moment-curvature analysis is performed to a wide range of cross-sections. From results of the analysis, a parameter representing the effect of the strain-hardening on the flexural strength of HSB600 composite girders is proposed. Furthermore, by using this parameter, the nominal flexural strength considering the strain-hardening effect for HSB600 composite I-girders in positive bending is proposed and then evaluated by comparing with the current AASHTO LRFD bridge design specifications.

A Study on Dimensional Change after Heat Treatment and Optimal Chemical Composition of Steels with 1200 MPa Tensile Strength for Automotive Subframe (인장강도 1200 MPa 급 자동차 서브 프레임의 합금성분 최적화 및 열변형 거동 연구)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • Four air hardening steels with carbon, silicon, manganese, chromium, and molybdenum variations have been used in this study to find out the optimal chemical compositions of steels with over 1200 MPa tensile strength for automotive subframe. The dimensional changes after heat treatment were determined for two automotive parts with open and closed cross sections using 3D scanner. When four steels were austenitized at 900℃ for 30 seconds, cooled at 3℃/s, reheated to 450℃ for 10 seconds followed by air cooling to simulate hot-dip galvanizing treatment showed ultra high tensile strength over 1200 MPa. Rear floor cross member with open cross section revealed much bigger dimensional changes than subframe with closed cross section after heat treatment at 900℃ for 20 minutes followed by air cooling.