• 제목/요약/키워드: Cross-flow type hydro turbine

검색결과 8건 처리시간 0.026초

파력발전용 횡류형 수력터빈의 성능 및 내부유동 (Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation)

  • 최영도;조영진;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

Performance Improvement of a Micro Eco Cross-Flow Hydro Turbine

  • Kokubu, Kiyoshi;Kanemoto, Toshiaki;Son, Sung-Woo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.902-909
    • /
    • 2012
  • This study is aimed to develop a new type of micro cross-flow hydro turbine which has very simple structure and relatively high efficiency. Micro eco cross-flow hydro turbine (ECFT) is proposed to apply in the ranges of very low and middle specific speeds in order to extend the operational range of the turbine. In order to not only obtain a basic data for a new design method of ECFT but also improve the turbine efficiency, experiments and CFD analysis on the performance and internal flow characteristics of the turbine model are conducted. According to the present study results, anti-recirculation block (ARB) and relatively wide turbine width with high flow rate improve the turbine efficiency.

파력발전용 횡류형 수력터빈의 노즐형상에 관한 연구 (A Study on the Nozzle Shapes of a Cross-Flow Type Hydro Turbine for Wave Power Generation)

  • 최영도;김창구;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.30-35
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shapes on the performance and internal flow characteristics of a cross-flow type hydro turbine for wave power generation. The performance of the turbine is calculated with the variation of rotational speed for 4 types of the nozzle shape using a commercial CFD code. The results show that nozzle shape should be designed considering available head of the turbine. Best efficiencies of the turbine by 4 types of the nozzle shape do not change largely but overall performances varies mainly by the nozzle width. The output power of the cross-flow type hydro turbine changes considerably by the nozzle shape and a partial region of stage 2 in the runner blade passage produces maximum regional output power in comparison with the other runner blade passage areas.

극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구 (CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed)

  • 최영도;손성우
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

전산유체역학 해석에 기반한 20kW급 도립형 횡류수차의 제작 및 성능 실증 (Fabrication and Performance Demonstration of the 20kW Class Inverted-type Cross-flow Turbine Based on Computational Fluid Dynamics Analysis)

  • 함상우;최지웅;정창호;김태윤;최상인;진근영;이정완;하호진
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.107-119
    • /
    • 2021
  • The cross-flow turbine is one of the most famous and widely used hydraulic power systems for a long time. The cross-flow turbine is especially popular in many countries and remote regions where off-grided because of its many benefits such as low cost, high efficiency at low head, simple structure, and easy maintenance. However, most modern turbines, including the cross-flow turbine, are unsuitable for the ultra-low head situation, known as less than 3m water head or zero head with over 0.5m/s flow velocity. In this study, we demonstrated a 20kW class inverted-type cross-flow turbine's performance. First, we reevaluated our previous studies and introduced how to design the inverted-type cross-flow turbine. Secondly, we fabricated the 20kW class inverted-type cross-flow turbine for the performance test. And then, we designed a testbed and installed the turbine system in the demonstration facility. In the end, we compare the demonstration with its previous CFD results. The comparing result shows that both CFD and real model fitted on guide vane angle at 10 degrees. At the demonstration, we achieved 42% turbine efficiency at runner speed 125 RPM.

전산유체역학을 이용한 초저낙차 상황에서의 도립형 횡류수차의 해석 및 설계 최적화 (Computational Analysis of an Inverted-type Cross-flow Turbine for Ultra-low head Conditions)

  • 함상우;하호진;이정완
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.76-86
    • /
    • 2019
  • The cross-flow turbine is a key hydraulic power system that is widely due to low costs, high efficiency, and low maintenance. In particular, the cross-flow turbine considered as the most suitable turbine for low head situations as it is known to operate down to 5 m of water head. However, the conventional cross-flow turbine is unsuitable for ultra-low head situations with less than a 3 m water head. In this study, we propose an inverted-type cross-flow turbine to overcome the limitations of conventional cross-flow turbines under ultra-low head situations. First, we described the limitations of conventional turbines and suggested a new turbine for the ultra-low head circumstances. Second, we investigated the performance of the new turbine using CFD analysis. Results demonstrated the effects of the design parameters, such as number of blades and rotor diameter ratio, on the performance of the suggested turbine. As a result, we developed an inverted-type cross-flow turbine with up to 60% efficiency under low water head conditions.

유효낙차에 따른 80kW급 횡류수차의 성능 및 내부유동 해석 (Performance and Internal Flow Analysis on the 80kW-Class Cross-Flow Hydro Turbine with the Variation of Effective Head)

  • 최영도;임재익;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.703-710
    • /
    • 2010
  • 최근 신재생에너지 연구개발과 관련하여 소수력발전에 대한 관심이 높아지고 있지만, 기존의 대수력용 수차 시스템과는 달리 소수력에 적당한 수차의 설계법이 아직 확립되어 있지 않기 때문에 고성능의 소수력용 수차의 개발이 요구되고 있다. 그러나, 복잡한 터빈의 구조에 의한 상대적으로 높은 제작단가는 소수력발전용 터빈의 개발에 큰 걸림돌로 작용하고 있다. 따라서, 본 연구에서는 수차의 형상이 상대적으로 간단하고 소수력자원에 적용하기가 용이한 80kW급 횡류형 수차에 대하여 유효낙차 변화에 따른 성능 및 내부유동에 대해서 검토하였다. 유효낙차가 증가함에 따라서 원주방향 및 반경방향 속도비가 증가하게 되며, 증가한 원주속도에 의해 각운동량이 증가하여 출력도 커지게 된다.

소수력발전용 횡류수차의 공기층효과에 의한 성능향상 (Performance Improvement of Cross-Flow type Small Hydro Turbine by Air Layer Effect)

  • 최영도;안영준;신병록;이동엽;이영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1070_1071
    • /
    • 2009
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow hydraulic turbine is proposed for small hydropower development in this study. The turbine‘s simple structure and high possibility of applying to the sites of relatively low effective head and large flow rate can be advantages for the introduction of the small hydropower development. The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. CFD analysis for the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss in the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  • PDF