• Title/Summary/Keyword: Cross-anisotropy

Search Result 74, Processing Time 0.039 seconds

Predictions of Texture Evolution and Plastic Anisotropy by Cross Rolling Based on Crystal Plasticity (결정소성학을 이용한 교차압연시의 집합조직과 소성이방성의 예측)

  • Kim D. S.;Won S. Y.;Son H. S;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.309-312
    • /
    • 2001
  • FEM simulating system of the cross-rolling texture formation offers a systematic and efficient way of exploring the relationship between the process variables and the state of plastic anisotropy of sheet product. Cross-rolled sheets possess higher average plastic strain ratios and lower planer anisotropy than those of the straight-rolled sheets. The employed model is a finite-element polycrystal model which each element used in FEM is assumed to be a crystal having different orientation by Takahashi. Texture development, deformation textures due to cross-rolling are predicted for face-centered cubic sheet metal. Crystal orientations are assigned on the basis of the pole figures obtained by X-ray diffraction. Development of anisotropy during cross rolling of an fcc sheet material is predicted theoretically with respected to flow stress and R-value in tensile test.

  • PDF

Seismic Traveltime Tomography in Inhomogeneous Anisotropic Media (불균질 이방성 매질에서의 탄성파 주시 토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.209-214
    • /
    • 2007
  • In Korean geology that crystalline rock is dominant, the properties of subsurface including the anisotropy are distributed complexly and changed abruptly. Because of such geological environments, cross-hole seismic traveltime tomography is widely used to obtain the high resolution image of the subsurface for the engineering purposes in the geotechnical sites. However, because the cross-hole tomography has a wide propagation angle coverage relatively, its data tend to include the seismic velocity anisotropy comparing with the surface seismic methods. It can cause the misinterpretation that the cross-hole seismic data including the anisotropic effects are analyzed and treated with the general processing techniques assuming the isotropy. Therefore, we need to consider the seismic anisotropy in cross-hole seismic traveltime tomography. The seismic anisotropic tomography algorithm, which is developed for evaluation of the velocity anisotropy, includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudo-beta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage.

  • PDF

Prediction of Soil Deformation with Nonlinear-Anisotropic Model (비선형 이방성 모델을 이용한 흙의 변형 거동 예측)

  • 윤충구;정영훈;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.41-48
    • /
    • 2002
  • The fact that nonlinearity and anisotropy of soil should be considered for the proper estimation of soil deformation has been recongnized for a long time. In this study, a new stiffness model which can reflect both nonlinearity and anisotropy is proposed. Nonlinearity is simulated by Ramberg-Osgood model and anisotropy is modeled with the cross-anisotropic elasticity. Analysis results with the developed model compared with those from analyses using linear isotropic model, linear anisotropic model, and nonlinear isotropic model. In the triaxial compression like condition, the effects of nonlinearity on the vertical strain are significant, but soil anisotropy does not affect the vertical strain. In 1-dimensional deformation condition, however, both nonlinearity and anisotropy of soil influence the final magnitude of the vertical strain. Also the increase of poisson's ratio magnifies the effect of anisotropy on the vertical strain in this condition.

  • PDF

Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells

  • Dogan, Ali;Arslan, H. Murat;Yerli, Huseyin R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.493-510
    • /
    • 2010
  • This paper presents effects of anisotropy and curvature on free vibration characteristics of cross-ply laminated composite cylindrical shallow shells. Shallow shells have been considered for different lamination thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and deformation have been showed. Then, using Hamilton's principle, governing differential equations have been obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply composite shells has been given. By using some simplifications and assuming Fourier series as a displacement field, differential equations are solved by matrix algebra for shallow shells. The results obtained by this solution have been given tables and graphs. The comparisons made with the literature and finite element program (ANSYS).

Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model (흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용)

  • 정충기;정영훈;윤충구
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.237-249
    • /
    • 2002
  • Nonlinearity and anisotropy of soil should be considered for the exact prediction of deformation before the failure state. In this study, a new constitutive model is developed in which the nonlinearity of soil is formulated by Ramberg-Osgood equation and the soil anisotropy is implemented by the cross-anisotropic elasticity. Nonlinear anisotropic model and other models for comparison are used to analyze the simple boundary value problems and the circular footing problem. In the results, the anisotropic ratio of elastic modulus is a key value for the bulk modulus of soil, the coeffcient of earth pressure at rest, and the slope of effective stress paths. Furthermore, it is found that the nonlinearity of soil considering the in-situ stresses has the great influence on the magnitude of settlements.

Evaluation of Mechanical Properties of AZ31B for Sheet Metal Forming at Warm and High Temperature (온간, 열간 판재 성형을 위한 AZ31B의 기계적 성질 평가)

  • Choo D. K.;Kim W. Y.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.256-259
    • /
    • 2004
  • In the present study, AZ31B sheets has a bad formability in room temperature, but the formability is improved significantly as increasing the temperature because of rolled magnesium alloy sheet has a hexagonal closed packed structure (HCP) and a plastic anisotropy. In this paper, after tensile test in various temperatures, strain rate, show the tensile mechanical properties, yield and ultimate strength, K-value, work hardening exponent(n), strain rate sensitivity(m). As temperature increased, yield, ultimate strength and K-value, work hardening exponent(n) are decreased but strain rate sensitivity(m) is increased. As cross-head-speed increased, yield, ultimate strength and K-value, work hardening exponent(n) are increased. And according to the temperature, how change the plastic anisotropy factor R. In addition, we observed how temperatures and cross-head-speed effect on microstructure.

  • PDF

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

Thermal Anisotropy of Hollow Carbon Fiber-Carbon Composite Materials

  • Yang, Chun-Hoi;Shim, Hwan-Boh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.

Magnetostriction and Magnetic Anisotropy Measurement Using High Efficiency Small EIectromagnet (고능률 소형 전자석에 의한 자왜 및 자기이방성 측정)

  • 이용호;신용돌;김병걸;민복기;송재성
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.179-183
    • /
    • 1994
  • A high efficiency small electromagnet (22 mm air gap and $40{\times}25mm^{2}$ core's cross section) suitable for measuring magnetostriction and magnetic anisotropy was biult. The magnet could be minaturized by reducing the measuring space and time. The excitation current of the electromagnet was supplied for only a few second of measuring time. Cooling system of the electromagnet could be eliminated since the dissipation energy was very small. An 0.5 T magnetic field was generated with 180 W power consumption. The values of magnetostriction and magnetic anisotropy were measured with a very sensitive capacitance cell with resolution of $10^{-8}$ and 1 nJ. The torque was calibrated using a soft magnetic ribbon's shape anisotropy.

  • PDF

Microinstabilities at Quasi-Perpendicular Shocks in the High-�� ICM

  • Kim, Sunjung;Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2020
  • At quasi-perpendicular shocks in the high-�� (��=Pgas/Pmag~100) intracluster medium (ICM), various microinstabilities occur by the temperature anisotropies and/or drift motions of plasma. In the downstream, the Alfvén ion cyclotron instability (AIC) due to the ion temperature anisotropy (Ti⊥>Ti║) is triggered by shock-reflected ions, the whistler instability (WI) is driven by the electron temperature anisotropy (Te⊥>Te║) as a consequence of the shock compression of magnetic fields, and the mirror instability is generated due to the ion and/or electron temperature anisotropy. At the shock foot, the modified two stream instability (MTSI) is possibly excited by the cross-field drift between ions and electrons. In the upstream, electron firehose instability (EFI) is driven by the electron temperature anisotropy or the relative drift between incoming and reflected electrons. These microinstabilities play important roles in the particle acceleration in ICM shocks, so understanding of the microinstabilities and the resultant plasma waves is essential. In this study, based on a linear stability analysis, the basic properties of the microinstabilities in ICM shocks and the ion/electron scale fluctuations are described. We then discuss the implication of our work on the electron pre-acceleration in ICM shocks.

  • PDF