• Title/Summary/Keyword: Cross-Flow

Search Result 2,040, Processing Time 0.028 seconds

CROSS FLOW EFFECTS ON THE FLAME HEIGHT OF AN INTERMEDIATE SCALE DIFFUSION FLAME

  • Kolb, Gilles;Torero, Jose L.;Most, Jean-Michel;Joulain, Pierre
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.169-177
    • /
    • 1997
  • An experimental study has been conducted at an intermediate scale to study the effect of a cross flow on a purely buoyant fire. Video taping of the flame and post processing of the images by means of a novel technique provide a contour of a mean flame for all cases studied. This flame contour allows the determination of a mean flame length and a mean flame height. The mean flame length and height are recorded as functions of the forced flow velocity. Three dimensional flow patterns are formed in the flame trailing edge affecting both the mean flame length and height. The three dimensional patterns are studied systematically as functions of the cross flow velocity to quantify the effect of confinement on the flame geometry.

  • PDF

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

The Effect of Cross-flow on Liquid Atomization (횡단유동이 액체 미립화에 미치는 영향)

  • Kim, Jong-Hyun;Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • The breakup processes and spray plume characteristics of liquid jets injected in subsonic air cross-flows were experimentally studied. The behaviors of column, penetration, breakup of plain liquid jet and droplet sizes, velocities have been studied in non-swirling cross-flow of air. Nozzle has a 1.0 mm diameter and Lid ratio=5. Experimental results indicate that the breakup point is delayed by increasing air momentum, the penetration decreases by increasing Weber number and the split angle is increased by increasing air velocity or decreasing injection velocity. SMD increases according as increasing height or decreases in accordance with increasing air velocity. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/d=40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume.

Characteristics of Droplet Properties in the Two-Phase Spray into a Subsonic Cross Flow

  • Lee, I.C.;Cho, W.J.;Koo, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.358-363
    • /
    • 2008
  • The spray cross-section characteristics of two-phase spray that using external-mixing nozzle injected into a subsonic cross flow were experimentally studied with various ALR ratio that is $0{\sim}59.4%$. Suction type wind tunnel was used and experiments were conducted to ambient environment. Several plain orifice nozzles with L/d of 30 and orifice diameter of 0.5 mm and orifice length 1.5 mm were tested. Free stream velocity profiles at the injection location were measured using hot wire. Spray images were captured to study collision point and column trajectory. Phase Doppler particle analyzer(PDPA) was utilized to quantitatively measuring droplet SMD, volume flux. Measuring probe of PDPA positions was moved 3-way transverse machine. SMD distributions were layered structure and peaked at the top of the spray plume and low value at bottom of the spray. Volume flux of spray was distributed to the two side region and volume flux quantity decreased when ALR ratio increased. It was found that the perpendicularly injected two-phase spray jet of external mixing into a cross flow showing that mistlike spray moved away from the test section bottom region.

  • PDF

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..

Experimental Study on the Three Dimensional Unsteady Flow in a Counter Rotating Axial Flow Fan (엇회전식 축류팬의 3 차원 비정상 유동에 관한 실험적 연구)

  • Park, Hyun-Soo;Cho, Lee-Sang;Kang, Hyun-Koo;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.822-827
    • /
    • 2003
  • Experiments were done for the three dimensional unsteady flow in a counter rotating axial flow fan under stable operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. Swirl velocity, which was generated by the front rotor, was recovered in the form of static pressure rise by the rear rotor except for hub and tip regions.

  • PDF

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Experimental Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Leading Angles of a Rear-Guider for a Room Air-Conditioner (리어가이더 선단각도에 따른 룸에어콘용 관류홴의 공력성능에 관한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.35-43
    • /
    • 2013
  • Generally, the chassis of an indoor RAC is composed of a rear-guider and a stabilizer. The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of the chassis of an indoor RAC. The purpose of this paper is to select the optimum design factors through the aerodynamic performance of a cross-flow fan. The design factors are the leading angle of a rear-guider (${\theta}_1$), a stabilizer setup angle(${\theta}_2$), a rear-guider clearance(${\epsilon}_1$), and a stabilizer clearance(${\epsilon}_2$), respectively. As a result, the optimum design factors of an indoor RAC can be presented as a combination of ${\theta}_1=33^{\circ}$, ${\theta}_2=55^{\circ}$, ${\epsilon}_1=6{\sim}8mm$, and ${\epsilon}_2=7mm$ through the analysis of a static pressure coefficient and a static pressure efficiency.

Enhancement of Ultrafiltration Performance Using Ultrasound (초음파를 이용한 한외여과의 성능 향상)

  • 염경호;육영재
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.283-290
    • /
    • 2003
  • To improve membrane performance, the dead-end and Cross-flow ultrafiltration with or without ultrasound irradiation onto the membrane module were carried out using a BSA protein solution. Intermittent or continuous irradiation of ultrasound effectively suppressed the formation of fouling on membrane or removed the fouling layers from membrane. Effect of ultrasound irradiation on the enhancement of ultrafiltration performance was more increased at the operating conditions which form more membrane fouling (at the operating conditions of higher feed concentration and TMP, and lower flow rate). The permeate flukes were enhanced up to 1.9 times in case of the dead-end ultrafiltration and 1.5 times in case of the cross-flow ultrafiltration by ultrasound irradiation onto the membrane module.