• Title/Summary/Keyword: Cross-Entropy Method

Search Result 60, Processing Time 0.027 seconds

An Improved Cross Entropy-Based Frequency-Domain Spectrum Sensing (Cross Entropy 기반의 주파수 영역에서 스펙트럼 센싱 성능 개선)

  • Ahmed, Tasmia;Gu, Junrong;Jang, Sung-Jeen;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.50-59
    • /
    • 2011
  • In this paper, we present a spectrum sensing method by exploiting the relationship of previous and current detected data sets in frequency domain. Most of the traditional spectrum sensing methods only consider the current detected data sets of Primary User (PU). Previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. By considering the relationship of the previous and current spectrum sensing, cross entropy-based spectrum sensing is proposed to detect PU signal more effectively, which has a strengthened performance and is robust. When previous detected signal is noise, the discriminating ability of cross entropy-based spectrum sensing is no better than conventional entropy-based spectrum sensing. To address this problem, we propose an improved cross entropy-based frequency-domain spectrum sensing. Regarding the spectrum sensing scheme, we have derived that the proposed method is superior to the cross entropy-based spectrum sensing. We proceed a comparison of the proposed method with the up-to-date entropy-based spectrum sensing in frequency-domain. The simulation results demonstrate the performance improvement of the proposed spectrum sensing method.

Probabilistic Technique for Power System Transmission Planning Using Cross-Entropy Method (Cross-Entropy를 이용한 전력계통계획의 확률적 기법 연구)

  • Lee, Jae-Hee;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2136-2141
    • /
    • 2009
  • Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.

Discriminant Analysis of Binary Data with Multinomial Distribution by Using the Iterative Cross Entropy Minimization Estimation

  • Lee Jung Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2005
  • Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.

Shadow Detection Based Intensity and Cross Entropy for Effective Analysis of Satellite Image (위성 영상의 효과적인 분석을 위한 밝기와 크로스 엔트로피 기반의 그림자 검출)

  • Park, Ki-hong
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.380-385
    • /
    • 2016
  • Shadows are common phenomena observed in natural scenes and often bring a major problem that is affected negatively in colour image analysis. It is important to detect the shadow areas and should be considered in the pre-processing of computer vision. In this paper, the method of shadow detection is proposed using cross entropy and intensity image, and is performed in single image based on the satellite images. After converting the color image to a gray level image, the shadow candidate region has been estimated the optimal threshold value by cross entropy, and then the final shadow region has been detected using intensity image. For the validity of the proposed method, the satellite images is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow detection is well performed.

Histogram Bin Number Selection Method Robust to the Variations of Channel Occupancy for Cross Entropy (크로스 엔트로피 기반 스펙트럼 센싱에서 채널 점유 시간 변화에 따른 히스토그램 Bin 개수 선택 기법)

  • Yong, Seulbaro;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2013
  • Most of the traditional spectrum sensing methods consider only the current detected data sets of Primary User (PU). However previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. Therefore, in the cross entropy spectrum sensing method, relationship of the previous and current spectrum sensing is considered to detect PU signal more effectively. But these cross entropy spectrum sensing methods only consider the ideal system. In other words, PU always occupy the channel during the same period. However, PU can occupy the channel either for a longer or a shorter period than the ideal case in the real system. For this reason, the spectrum sensing performance can be varied. In this paper, we propose the method that can maintain the performance of spectrum sensing in the real system and we confirm the results with the help of simulation.

Multi Agents-Multi Tasks Assignment Problem using Hybrid Cross-Entropy Algorithm (혼합 교차-엔트로피 알고리즘을 활용한 다수 에이전트-다수 작업 할당 문제)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.37-45
    • /
    • 2022
  • In this paper, a multi agent-multi task assignment problem, which is a representative problem of combinatorial optimization, is presented. The objective of the problem is to determine the coordinated agent-task assignment that maximizes the sum of the achievement rates of each task. The achievement rate is represented as a concave down increasing function according to the number of agents assigned to the task. The problem is expressed as an NP-hard problem with a non-linear objective function. In this paper, to solve the assignment problem, we propose a hybrid cross-entropy algorithm as an effective and efficient solution methodology. In fact, the general cross-entropy algorithm might have drawbacks (e.g., slow update of parameters and premature convergence) according to problem situations. Compared to the general cross-entropy algorithm, the proposed method is designed to be less likely to have the two drawbacks. We show that the performances of the proposed methods are better than those of the general cross-entropy algorithm through numerical experiments.

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.

Application of Subarray Averaging and Entropy Minimization Algorithm to Stepped-Frequency ISAR Autofocus (부배열 평균과 엔트로피 최소화 기법을 이용한 stepped-frequency ISAR 자동초점 기법 성능 향상 연구)

  • Jeong, Ho-Ryung;Kim, Kyung-Tae;Lee, Dong-Han;Seo, Du-Chun;Song, Jeong-Heon;Choi, Myung-Jin;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.158-163
    • /
    • 2008
  • In inverse synthetic aperture radar (ISAR) imaging, An ISAR autofocusing algorithm is essential to obtain well-focused ISAR images. Traditional methods have relied on the approximation that the phase error due to target motion is a function of the cross-range dimension only. However, in the stepped-frequency radar system, it tends to become a two-dimensional function of both down-range and cross-range, especially when target's movement is very fast and the pulse repetition frequency (PRF) is low. In order to remove the phase error along down-range, this paper proposes a method called SAEM (subarray averaging and entropy minimization) [1] that uses a subarray averaging concept in conjunction with the entropy cost function in order to find target motion parameters, and a novel 2-D optimization technique with the inherent properties of the proposed entropy-based cost function. A well-focused ISAR image can be obtained from the combination of the proposed method and a traditional autofocus algorithm that removes the phase error along the cross-range dimension. The effectiveness of this method is illustrated and analyzed with simulated targets comprised of point scatters.

  • PDF

Comparative Analysis on Error Back Propagation Learning and Layer By Layer Learning in Multi Layer Perceptrons (다층퍼셉트론의 오류역전파 학습과 계층별 학습의 비교 분석)

  • 곽영태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1044-1051
    • /
    • 2003
  • This paper surveys the EBP(Error Back Propagation) learning, the Cross Entropy function and the LBL(Layer By Layer) learning, which are used for learning the MLP(Multi Layer Perceptrons). We compare the merits and demerits of each learning method in the handwritten digit recognition. Although the speed of EBP learning is slower than other learning methods in the initial learning process, its generalization capability is better. Also, the speed of Cross Entropy function that makes up for the weak points of EBP learning is faster than that of EBP learning. But its generalization capability is worse because the error signal of the output layer trains the target vector linearly. The speed of LBL learning is the fastest speed among the other learning methods in the initial learning process. However, it can't train for more after a certain time, it has the lowest generalization capability. Therefore, this paper proposes the standard of selecting the learning method when we apply the MLP.

Image Restoration Algorithms by using Fisher Information (피셔 인포메이션을 이용한 영상 복원 알고리즘)

  • 오춘석;이현민;신승중;유영기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.89-97
    • /
    • 2004
  • An object to reflect or emit light is captured by imaging system as distorted image due to various distortion. It is called image restoration that estimates original object by removing distortion. There are two categories in image restoration method. One is a deterministic method and the other is a stochastic method. In this paper, image restoration using Minimum Fisher Information(MFI), derived from B. Roy Frieden is proposed. In MFI restoration, experimental results to be made according to noise control parameter were investigated. And cross entropy(Kullback-Leibler entropy) was used as a standard measure of restoration accuracy, It is confirmed that restoration results using MFI have various roughness according to noise control parameter.