• Title/Summary/Keyword: Cross wind

Search Result 433, Processing Time 0.022 seconds

Evaluation of Torsional Behaviour for the Catwalk System on A Suspension Bridge by Cross Bridge Interval (크로스 브릿지 간격에 따른 캣워크 시스템의 비틀림 거동 평가)

  • Lee, Ho;Kim, Ho Kyung;Kim, Gi Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.371-376
    • /
    • 2015
  • This study was conducted for the torsional behavior of catwalk system which is a temporary structure on a suspension bridge. The torsional deformation of the catwalk structure has a significant effect on the workability and safety of workers during main cable erection. For this reason, the torsional deformation of catwalk is controlled to be acceptable levels below by adjusting the cross bridge interval in design stage. This study analyzed the effect of separation between cross bridge associated with twist safety of catwalk system. For the analytical approach, a detailed analysis model was created including cross bridge. Both wind load within the wind velocity range that allows the construction and eccentric load of Prefabricated Parallel Wire Strand were analyzed by analysis model. Result of study shows that separation between cross bridges has a significant effect on the torsional behavior of the catwalk.

Instability of pipes and cables in non-homogeneous cross-flow

  • Riera, Jorge D.;Brito, J.L.V.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The vibrations of bodies subjected to fluid flow can cause modifications in the flow conditions, giving rise to interaction forces that depend primarily on displacements and velocities of the body in question. In this paper the linearized equations of motion for bodies of arbitrary prismatic or cylindrical cross-section in two-dimensional cross-flow are presented, considering the three degrees of freedom of the body cross-section. By restraining the rotational motion, equations applicable to circular tubes, pipes or cables are obtained. These equations can be used to determine stability limits for such structural systems when subjected to non uniform cross-flow, or to evaluate, under the quasi static assumption, their response to vortex or turbulent excitation. As a simple illustration, the stability of a pipe subjected to a bidimensional flow in the direction normal to the pipe axis is examined. It is shown that the approach is extremely powerful, allowing the evaluation of fluid-structure interaction in unidimensional structural systems, such as straight or curved pipes, cables, etc, by means of either a combined experimental-numerical scheme or through purely numerical methods.

Mechanism of ovalling vibrations of cylindrical shells in cross flow

  • Uematsu, Yasushi;Tsujiguchi, Noboru;Yamada, Motohiko
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.85-100
    • /
    • 2001
  • The mechanism of wind-induced ovalling vibrations of cylindrical shells is numerically investigated by using a vortex method. The subject of this paper is limited to a two-dimensional structure in the subcritical regime. The aerodynamic stability of the ovalling vibrations in the second to fourth circumferential modes is discussed, based on the results of a forced-vibration test. In the analysis, two modal configurations are considered; one is symmetric and the other is anti-symmetric with respect to a diameter parallel to the flow direction. The unsteady pressures acting on a vibrating cylinder are simulated and the work done by them for one cycle of a harmonic motion is computed. The effects of a splitter plate on the flow around the cylinder as well as on the aerodynamic stability of the ovalling vibrations are also discussed. The consideration on the mechanism of ovalling vibrations is verified by the results of a free-vibration test.

Design Optimization of the Support Frame of an Antenna Positioner Mounted on a Vehicle (차량 탑재형 안테나 포지셔너의 반사판 지지대 최적설계)

  • Jang, Taeho;Kim, Youngshik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.411-416
    • /
    • 2014
  • In this research we present design optimization methods for a vehicle-mounted satellite antenna positioner. Our initial antenna positioner was conservatively designed to satisfy a worst case scenario where wind blew across the positioner at the speed of 120 km/h. Investigating stresses and safety based on Finite Element Methods (FEM), we find reflector support frames can be optimized to significantly reduce the weight of the positioner system. Thus, we optimize the reflector support frame from the given initial design while considering weight, maximum stress, maximum allowable deflection, cross section, and thickness. As a result, Shape C and the thickness of 2 mm are determined for the cross section of the reflector support frame. Applying this result, the weight of the new antenna positioner is 57.343 kg, which is decreased by 10.74% compared to the initial conservative design.

On the mechanism of vertical stabilizer plates for improving aerodynamic stability of bridges

  • Chen, Airong;Zhou, Zhiyong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.59-74
    • /
    • 2006
  • Vertical stabilizer plates have been found to be an effective aerodynamic measure to improve the aerodynamic stability of bridges either with an open cross section or with a streamlined box cross section in wind tunnel testings and have been adopted in some long span bridges. By taking an open deck II-shaped section and a closed box section as examples, the mechanism of vertical stabilizer plates for improving aerodynamic stability are investigated by using numerical simulation based on Random Vortex Method. It is found that vertical stabilizer plates can increase the amplitude of the heaving motion, and decrease that of the rotational motion of the bridge decks.

Influence of the Distribution of Wind Velocity and Mist Concentration for the Improvement of Efficiency with an Electrostatic Precipitator (전기집진장치의 효율 개선을 위한 풍속 분포 및 입자농도 분포의 영향)

  • 임헌찬;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.155-161
    • /
    • 1998
  • Recently, there are widely needs of small scale electrostatic precipitator(ESP) in machine shop and other factories. Since the space of such factories is limited, the improvement of collection efficiency is predominant subject. In this study, we examine the influence of distribution of wind velocity and oil mist concentration inside the ESP in order to improve the performance of the ESP. The distribution of wind velocity and mist concentration is measured respectively in a cross-sectional plane of the ESP. The former is controlled by using a louver which is placed in front of an ionizer and the latter is controlled by lengthening the pipe of entrance of the ESP in order to have plenty of time that mist is dispersed evenly. It is shown that the uniformity of distribution of wind velocity and mist concentration inside the ESP can be getting by adopting a louver with proper shape and lengthening the pipe of entrance and is also contributed to collection efficiency considerably.

  • PDF

A Study on 3-Phase Balance of Offshore Wind Generator with Dual Inverter System (2중 인버터 시스템을 갖는 해상용 풍력발전기의 3상 평형성에 관한 연구)

  • Seo, Jangho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.23-30
    • /
    • 2013
  • This paper shows the method of winding connection and the balance of three phase of dual inverter systems used for offshore wind power generator. In order to satisfy low cost manufacturing of large scaled wind generator, the number of slot per pole per phase should be reduced. For this reason, in this research, the number is selected as '1' which is the minimum number that stator can have. Based on the prototype machine, three types of machine for the analysis are selected, and various performances especially in terms of electrically balanced condition are also investigated. Moreover, in this paper, new inductance modeling of dual 3-phase considering cross-coupling between two inverter systems is proposed. The several inductances such as mutual-, synchronous inductances are studied. By using FEA, based on calculated the flux linkage of d and q-axis, the validity of the proposed inductance modeling is confirmed.

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.

Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation

  • Koyama, Ryuji;Fujita, Kohei;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.293-315
    • /
    • 2015
  • While most of researches on system identification of building structures are aimed at finding modal parameters first and identifying the corresponding physical parameters by using the transformation in terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is performed on the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors is restricted in case of using time-series data for low-rise buildings and does not cause serious problems.

A Kalman filter based algorithm for wind load estimation on high-rise buildings

  • Zhi, Lun-hai;Yu, Pan;Tu, Jian-wei;Chen, Bo;Li, Yong-gui
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • High-rise buildings are generally sensitive to strong winds. The evaluation of wind loads for the structural design, structural health monitoring (SHM), and vibration control of high-rise buildings is of primary importance. Nevertheless, it is difficult or even infeasible to measure the wind loads on an existing building directly. In this regard, a new inverse method for evaluating wind loads on high-rise buildings is developed in this study based on a discrete-time Kalman filter. The unknown structural responses are identified in conjunction with the wind loads on the basis of limited structural response measurements. The algorithm is applicable for estimating wind loads using different types of wind-induced response. The performance of the method is comprehensively investigated based on wind tunnel testing results of two high-rise buildings with typical external shapes. The stability of the proposed algorithm is evaluated. Furthermore, the effects of crucial factors such as cross-section shapes of building, the wind-induced response type, errors of structural modal parameters, covariance matrix of noise, noise levels in the response measurements and number of vibration modes on the identification accuracy are examined through a detailed parametric study. The research outputs of the proposed study will provide valuable information to enhance our understanding of the effects of wind on high-rise buildings and improve codes of practice.