• 제목/요약/키워드: Cross flow model

검색결과 529건 처리시간 0.025초

가시화기법을 이용한 룸 에어컨 내부의 유동 구조에 관한 연구 (Study on Flow Structure inside Room Air Conditioner Using Visualization Technique)

  • 이수홍;라선욱;강근;고한서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2713-2717
    • /
    • 2008
  • Whole flow fields of a room air conditioner (RAC) have been visualized by a Particle Image Velocimetry (PIV) technique to analyze the flow structure with various inlet and outlet angles, and to control an eccentric vortex which affects an efficiency and noise of the RAC. A test model with 5 stages of a cross flow fan has been manufactured and a transparent acryl has been installed at the side of the test model for the PIV experiment. The inlet and outlet flows and the flow inside the cross flow fan have been analyzed by varying the inlet grill angles and outlet blade angles. The movement of the eccentric vortex has been investigated experimentally by developing the measurement technique for the inner flow field of the cross flow fan. From the visualization of the inner flows, the origins of the noise inside the RAC and the condensation points around the outlet parts of the cold air have been observed and the solution of the problems can be proposed in this study.

  • PDF

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.

수치해석적 기법을 이용한 횡류홴 성능 평가 (Performance Estimation of Cross-Flow Fan by Numerical Method)

  • 김동원;이준화;박성관;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

흐름에 수직한 방향으로 급격한 수심 변화가 존재하는 해역에서의 열오염 이동 예측 해석해 모형 (An Analytical Model for Predicting Heat Transport with a Sharp Depth Change in Cross-Flow Direction)

  • 이호진;김영호
    • 한국해안·해양공학회논문집
    • /
    • 제20권1호
    • /
    • pp.62-72
    • /
    • 2008
  • 본 연구에서는 흐름에 수직한 방향으로 급격한 수심 변화가 존재하는 해역에서 점열원에 의한 열오염 분포를 예측할 수 있는 해석 모델을 개발하였다. 개발된 모델을 이용하여 열오염 분포에 있어 수심 변화와 흐름효과를 검토하였다. 계산 결과 흐름에 수직한 방향으로 수심 변화가 존재할 경우 수평 확산 플럭스의 증감으로 인해 수심 변화 경계를 가로지르는 열의 이동이 증가하거나 감소하는 것으로 나타났다. 조류와 동시에 잔차류 성분을 포함할 경우에는 이류에 의한 열오염 수송 효과가 증가하여 수심 변화 경계를 가로지르는 수평 확산은 상대적으로 감소하였다.

횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구 (A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT))

  • 하진호;김현철;김철호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

횡류형 수직축 풍력터빈 개발에 관한 연구 (A Study on the Development of Cross-flow Type Vertical Axis Wind Turbine)

  • 황영철;최영도;김일수;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.493-493
    • /
    • 2009
  • Recently, small vertical axis wind turbine attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow type wind turbine is proposed for small wind turbine development in this study because the turbine has relatively simple structure and high possibility of applying to small wind turbine. The purpose of this study is to investigate the effect of the turbine‘s structural configuration on the performance and internal flow characteristics of the cross-flow turbine model using CFD analysis. The results show that guide nozzle should be adopted to improve the performance of the turbine. Optimization of the nozzle shape will be key-importance for the high performance of the turbine.

  • PDF

전산유체역학 해석에 기반한 20kW급 도립형 횡류수차의 제작 및 성능 실증 (Fabrication and Performance Demonstration of the 20kW Class Inverted-type Cross-flow Turbine Based on Computational Fluid Dynamics Analysis)

  • 함상우;최지웅;정창호;김태윤;최상인;진근영;이정완;하호진
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.107-119
    • /
    • 2021
  • The cross-flow turbine is one of the most famous and widely used hydraulic power systems for a long time. The cross-flow turbine is especially popular in many countries and remote regions where off-grided because of its many benefits such as low cost, high efficiency at low head, simple structure, and easy maintenance. However, most modern turbines, including the cross-flow turbine, are unsuitable for the ultra-low head situation, known as less than 3m water head or zero head with over 0.5m/s flow velocity. In this study, we demonstrated a 20kW class inverted-type cross-flow turbine's performance. First, we reevaluated our previous studies and introduced how to design the inverted-type cross-flow turbine. Secondly, we fabricated the 20kW class inverted-type cross-flow turbine for the performance test. And then, we designed a testbed and installed the turbine system in the demonstration facility. In the end, we compare the demonstration with its previous CFD results. The comparing result shows that both CFD and real model fitted on guide vane angle at 10 degrees. At the demonstration, we achieved 42% turbine efficiency at runner speed 125 RPM.

횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구 (A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT))

  • 정광섭;김철호
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.

병원의 미래 현금흐름 정보예측 (A Study on the Predictability of Hospital's Future Cash Flow Information)

  • 문영전;양동현
    • 한국병원경영학회지
    • /
    • 제11권3호
    • /
    • pp.19-41
    • /
    • 2006
  • The Objective of this study was to design the model which predict the future cash flow of hospitals and on the basis of designed model to support sound hospital management by the prediction of future cash flow. The five cash flow measurement variables discussed in financial accrual part were used as variables and these variables were defined as NI, NIDPR, CFO, CFAI, CC. To measure the cash flow B/S related variables, P/L related variables and financial ratio related variables were utilized in this study. To measure cash flow models were designed and to estimate the prediction ability of five cash flow models, the martingale model and the market model were utilized. To estimate relative prediction outcome of cash flow prediction model and simple market model, MAE and MER were used to compare and analyze relative prediction ability of the cash flow model and the market model and to prove superiority of the model of the cash flow prediction model, 32 Regional Public Hospital's cross-section data and 4 year time series data were combined and pooled cross-sectional time series regression model was used for GLS-analysis. To analyze this data, Firstly, each cash flow prediction model, martingale model and market model were made and MAE and MER were estimated. Secondly difference-test was conducted to find the difference between MAE and MER of cash flow prediction model. Thirdly after ranking by size the prediction of cash flow model, martingale model and market model, Friedman-test was evaluated to find prediction ability. The results of this study were as follows: when t-test was conducted to find prediction ability among each model, the error of prediction of cash flow model was smaller than that of martingale and market model, and the difference of prediction error cash flow was significant, so cash flow model was analyzed as excellent compare with other models. This research results can be considered conductive in that present the suitable prediction model of future cash flow to the hospital. This research can provide valuable information in policy-making of hospital's policy decision. This research provide effects as follows; (1) the research is useful to estimate the benefit of hospital, solvency and capital supply ability for substitution of fixed equipment. (2) the research is useful to estimate hospital's liqudity, solvency and financial ability. (3) the research is useful to estimate evaluation ability in hospital management. Furthermore, the research should be continued by sampling all hospitals and constructed advanced cash flow model in dimension, established type and continued by studying unified model which is related each cash flow model.

  • PDF

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.