• Title/Summary/Keyword: Cross elasticity

Search Result 158, Processing Time 0.029 seconds

Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.409-424
    • /
    • 2012
  • Since relatively low elasticity modulus of the FRP materials results in lower natural frequencies, it is necessary to study the free vibration of FRP transmission poles. In this paper, the free vibration of tapered FRP transmission poles with thin-walled circular cross-section is investigated by a tapered beam element. To model the flexible joints of the modular poles, a rotational spring model is used. Modal analysis is performed for typical FRP poles with/without joint and they are also modeled by ANSYS commercial finite element software. There is a good correlation between the results of the tapered beam finite element model and those obtained from ANSYS as well as the existing experimental results. The effects of different geometries, material lay-ups, concentrated masses at the pole tip, and joint flexibilities are evaluated. Moreover, it is concluded that using tougher fibres at the inner and outer layers of the cross-section, results in higher natural frequencies, significantly.

Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model (흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용)

  • 정충기;정영훈;윤충구
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.237-249
    • /
    • 2002
  • Nonlinearity and anisotropy of soil should be considered for the exact prediction of deformation before the failure state. In this study, a new constitutive model is developed in which the nonlinearity of soil is formulated by Ramberg-Osgood equation and the soil anisotropy is implemented by the cross-anisotropic elasticity. Nonlinear anisotropic model and other models for comparison are used to analyze the simple boundary value problems and the circular footing problem. In the results, the anisotropic ratio of elastic modulus is a key value for the bulk modulus of soil, the coeffcient of earth pressure at rest, and the slope of effective stress paths. Furthermore, it is found that the nonlinearity of soil considering the in-situ stresses has the great influence on the magnitude of settlements.

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng;Gao, Yanan;Moradi, Zohre;Ali, Yasar Ameer;Khadimallah, Mohamed Amine
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.371-388
    • /
    • 2022
  • The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.

Effects of Fiber Alignment Direction and Stacking Sequence of Laminates on Fracture Behavior of Biomimetic Composites under Pressure Loading (압력하중 하에서 섬유배열방향과 적층판의 적층순서에 따른 생체모방 복합재의 파괴 거동에 관한 연구)

  • Myungsoo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.201-209
    • /
    • 2023
  • Recently, fiber-reinforced composites have been widely used in various industrials fields. In this study, the mechanical behavior, especially fracture behavior, of biomimetic fiber-reinforced composites subjected to pressure loading was analyzed using finite element analysis (FEA). The fiber alignments in the biomimetic composites formed a helicoidal structure, wherein a stacking sequence involved a gradual rotation of each ply in the multi-layered laminated composites. For comparison, cross-ply composite samples with fibers arranged at 0° and 90° were prepared and analyzed. In addition, the mechanical behavior was analyzed based on combinations of the stacking sequence of carbon-fiber composites and glass-fiber composites. The FEA results showed that, when compared with the cross-ply samples, the mechanical properties of the biomimetic composites were considerably improved under pressure loading, which was applied to one side of the composites. Thus, the biomimetic helicoidal structure significantly improved the mechanical properties of the composites. Placing materials having high elasticity and strength in the outermost layers (the layer of the side on which pressure was applied and the opposite side layer) of the composites also significantly contributed to improving the mechanical properties of the composites.

The Comparision of the Static Balance, Contact Area, and Plantar Pressure of Flexible Flat Foot According to Elastic Taping

  • Hyeon-Seong Joo;Sam-Ho Park;Myung-Mo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.421-429
    • /
    • 2022
  • Objective: The purpose of this study was to compare and analyze the effects of arch support taping on static balance, static/dynamic foot contact area, and ground reaction force during walking according to the types of elastic tapes with mechanical elasticity differences. Design: Cross-sectional study Methods: Twenty-six participants selected for flexible flat feet through the navicular drop test were randomly assigned to non-taping, Dynamic-taping, and Mechano-taping conditions. Static balance and foot contact area were compared in the standing posture according to arch support taping conditions, and foot contact area and ground reaction force were compared during walking. Results: There was no significant difference in static balance according to the taping condition in the standing position, but the foot contact area in the Mechano-taping condition showed a significant decrease compared to the non-taping condition (p<0.05). The foot contact area during walking significantly decreased in the Dynamic-taping and Mechano-taping conditions (p<0.05), but there was no significant difference between the ground reaction force. Conclusions: Based on the results of this study, it was confirmed that among the types of elastic taping, arch support taping using dynamic taping and Mechano-taping has the effect of supporting the arch with high elastic recovery. Any type of elastic tape can be used for arch alignment in flexible flat foot.

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA;Adi SANTOSO;Abdurrachman ABDURRACHMAN;Dina Alva PRASTIWI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.81-97
    • /
    • 2023
  • The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.

Structural Optimum Design of Composite Rotor Blade (복합재 로터 블레이드의 구조 최적설계)

  • Park, Jung-Jin;Lee, Min-Woo;Bae, Jae-Sung;Lee, Soo-Yong;Kim, Seok-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.26-31
    • /
    • 2007
  • This paper addresses a method for structural optimum design of composite rotor blade. The basic model of a composite helicopter main rotor blade is designed and its parameters determining the structural/dynamic properties are studied. Through the investigation of flap/lag/torsional stiffness, the structural properties of the model are analyzed. In this study, helicopter rotor blades are analyzed by using VABS. The computer program VABS (Variational Asymptotic Beam Section Analysis) uses the variational asymptotic method to split a three-dimensional nonlinear elasticity problem into a two dimensional cross-sectional analysis and a one-dimensional nonlinear beam problem. This is accomplished by taking advantage of certain small parameters inherent to beam-like structures. In addition, the rotational stability of the blade is estimated by the frequency diagram from FE analysis(MSC.Patran/Nastran) to understand its vibrational property. From the result, design parameters to determine and optimize the properties of the model are presented.

  • PDF

Quantitative Approaches for Classification of the Patterns on Scientific and Technological Development (과학기술발전(科學技術發展)패턴의 추출(抽出)을 위한 계량적(計量的) 분석(分析))

  • Gwon, Cheol-Sin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.2
    • /
    • pp.27-41
    • /
    • 1981
  • The purpose of this study is to extract and classify the general patterns on scientific and technological development by quantitative approaches. Indicators used for this pattern classification amounted to a total of 39. what is more, these indicators were set up with the recent data for the first half of the 1970's mainly, and 141 nations were selected as the sample of the analysis. 7 aspects which prescribe the scentific and technological activities were established, and so 3 patterns of the S & T development were extrected by means of a "two-dimensional cross section" among them. (1) A pattern showing the trend of the exponential curve from the point over a certain level (in this study, it is defined as "Threshold Valued"). (2) A pattern in which elasticity of the exponential curve is gradually reduced from the point over the threshold value. (3) A pattern not showing any trend, but forming a large variance.

  • PDF

Fracture Toughness of Wood Grown in Korea (II) - Mode I Fracture of Hardwoods - (국산재의 파괴인성에 관한 연구 (II) - 활엽수의 모-드 I 파괴 -)

  • Lee, Jun-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.6-13
    • /
    • 1991
  • Tests of notched specimens of ten hardwood species in the LR and LT systems were conducted to investigate fracture toughness($K_{IC}$) and effective moduli of elasticity(MOE). $K_{IC}$ values were examined in relation to MOR, MOE, specific gravity of clear wood specimens. It was found in both systems that there were significant relationship between $K_{IC}$ and MOR, $K_{IC}$ and specific gravity. To predict the effective MOE of notched specimen from MOE of clear wood, it was analyzed by using equvalent cross-section method. In LR system, the observed values were similar to the predicted values, but in LT system, both were not agreed as the ovserved values were smaller. However. the results were shown that this method was avaliable to predict the effective MOE of notched specimens.

  • PDF

Reliability analysis of uncertain structures using earthquake response spectra

  • Moustafa, Abbas;Mahadevan, Sankaran
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.279-295
    • /
    • 2011
  • This paper develops a probabilistic methodology for the seismic reliability analysis of structures with random properties. The earthquake loading is assumed to be described in terms of response spectra. The proposed methodology takes advantage of the response spectra and thus does not require explicit dynamic analysis of the actual structure. Uncertainties in the structural properties (e.g. member cross-sections, modulus of elasticity, member strengths, mass and damping) as well as in the seismic load (due to uncertainty associated with the earthquake load specification) are considered. The structural reliability is estimated by determining the failure probability or the reliability index associated with a performance function that defines safe and unsafe domains. The structural failure is estimated using a performance function that evaluates whether the maximum displacement has been exceeded. Numerical illustrations of reliability analysis of elastic and elastic-plastic single-story frame structures are presented first. The extension of the proposed method to elastic multi-degree-of-freedom uncertain structures is also studied and a solved example is provided.