• 제목/요약/키워드: Cross effects

검색결과 3,386건 처리시간 0.028초

해상 풍력발전기의 전자기파 산란에 관한 수치 시뮬레이션 (Numerical Simulation of Electromagnetic Wave Scattering from Offshore Wind Turbine)

  • 김국현;조대승;최길환
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.536-544
    • /
    • 2009
  • The performance of radars operated near an offshore wind farm region may be degraded due to the distorted signals by wind turbines. This degradation of radar systems includes ghost effects and doppler effects by a tower, nacelle, and turbine blades consisting of the wind turbine. In this paper, electromagnetic wave backscatterings from a offshore wind turbine are numerically simulated in terms of temporal radar cross section and radar cross section spectra, using a quasi-static approach based on physical optics and physical theory of diffraction. The simulations are carried out at 3.05 GHz for the seven yaw angles and four blade pitch angles. From the results, radar cross section values and doppler effect as turbine blades rotate are investigated.

$3\times3$ 교차실험을 범주형 자료 분석을 위한 주변확률모형 (The Marginal Model for Categorical Data Analysis of $3\times3$ Cross-Trials)

  • 안주선
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.25-37
    • /
    • 2001
  • 세 처리, 세 기간을 갖는 3$\times$3 교차실험에서 c($\geq$3)개의 범주를 가진 자료의 분석에 사용될 수 있는 주변확률모형을 제안한다. 이 모형은 Kenward and Jones(1991)의 결합확률 모형의 대조물 (counterpart)로 사용될 수 있고 2항 변수를 갖는 3$\times$3 교차실험에서 처리 효과를 분석하기 위한 Balagtas et al(1995)의 일변량주변로지트모형의 일반화이다. 세 종류의 링크변화를 사용하여 주변확률모형방정식의 구성된다. 링크변환행렬과 모형행렬을 구성하는 방법이 주어지고, 모수의 추정이 논의된다. 제안된 모형을 Kenward and Jones 자료의 분석에 응용한다.

  • PDF

Dynamic analysis of bridge girders submitted to an eccentric moving load

  • Vieira, Ricardo F.;Lisi, Diego;Virtuoso, Francisco B.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.173-203
    • /
    • 2014
  • The cross-section warping due to the passage of high-speed trains can be a relevant issue to consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams is analysed through the presented beam model, comparing the results with analytical solutions presented in the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is obtained from the proposed finite element beam model that includes warping by a modal analysis.

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3597-3601
    • /
    • 2013
  • The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.

다기능성 함불소고분자/Blocked-HMDI 블렌드계의 가교화 반응에서의 촉매 영향 (Catalyst Effects on Cross-linking of a Multi-Functional Fluoropolymer/Blocked-HMDI Blends)

  • 안원술
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2408-2413
    • /
    • 2012
  • 불소를 함유하는 다기능성 함불소고분자의 가교화 반응을 위하여 페놀로 blocking된 HMDI를 사용하고 반응의 촉진을 위하여 주석계 촉매(stanous catalyst)를 사용하여 DSC 및 TGA를 사용하여 반응에 미치는 촉매의 영향을 살펴보았다. 용매 및 HMDI의 blocking제로 사용된 페놀이 약 $150^{\circ}C$에 이르기까지 해리되면서 휘발하게 되고 $230-250^{\circ}C$ 온도에서 가교 생성반응이 이루어지는 것이 관찰되었다. 촉매의 농도에 따른 반응기구의 변화는 없는 대신 촉매가 도입될 경우 100배 이상 빨라지는 급격한 반응속도의 변화가 관찰되었으며, 이에 따른 활성화 에너지는 비촉매계에 대한 81.8 kJ/mol로부터 1 phr 촉매계의 대하여 61.7 kJ/mol까지 감소하는 것이 관찰되었다.

Peak Pressures Acting on Tall Buildings with Various Configurations

  • Bandi, Eswara Kumar;Tanaka, Hideyuki;Kim, Yong Chul;Ohtake, Kazuo;Yoshida, Akihito;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.229-244
    • /
    • 2013
  • Twenty six pressure models of high rise buildings with various cross-sections including twisted models were tested in a boundary layer wind tunnel. The cross-sections were triangular, square, pentagon, hexagon, octagon, dodecagon, circular, and clover. This study investigates variations in peak pressures, and effects of various cross-sections and twist angles on peak pressures. To study the effects of various configurations and twist angles on peak pressures in detail, maximum positive and minimum negative peak pressures at each measurement point of the building for all wind directions are presented and discussed. The results show that peak pressures greatly depend on building cross-section and twist angle.

Activities of Upper Limb Muscles Related to the Direction of Elastic Tape Application in Healthy Adults: A Randomized Trial of Parallel-Aligned Versus Cross-Aligned Tape Application

  • Oh, Duck-Won;Chon, Seung-Chul
    • 한국전문물리치료학회지
    • /
    • 제20권4호
    • /
    • pp.9-15
    • /
    • 2013
  • The purpose of this study was to evaluate the differences in electromyographic (EMG) activities of upper limb muscles between cross- and parallel-aligned taping and to compare the effects of these 2 taping methods in healthy adults. Thirty subjects, who volunteered for this study, were tested under 3 taping conditions in random order: (1) no taping, (2) cross-aligned taping, and (3) parallel-aligned taping. EMG activities of the biceps brachii, triceps brachii, flexor carpi ulnaris, and extensor carpi radialis muscles were measured. All muscles showed significant differences in EMG activity among the 3 conditions (p<.05). In the post hoc test, biceps brachii and triceps brachii muscles showed significant differences in EMG activity between the no taping and the cross-aligned taping conditions and between the no taping and the parallel-aligned taping conditions. Additionally, the EMG activities of the flexor carpi radialis and extensor carpi radialis muscles appeared to be significantly different between the no taping and parallel-aligned taping conditions. These findings demonstrate that taping may be helpful for decreasing muscle activity, regardless of the direction of tape application. This study provides useful information to future researchers regarding the effects of taping on muscle activity.

EMTP를 이용한 지중송전케이블의 부분방전 신호 전파특성 분석 (Effects Analysis of Partial Discharge Signal Propagation Characteristics in Underground Transmission Cables Using EMTP)

  • 정채균;장태인
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.629-635
    • /
    • 2014
  • This paper describes propagation characteristics obtained by considering semiconducting screen and cross-bonding in underground transmission cables. The semiconducting screen of power cable has effect on propagation characteristics including attenuation, velocity and surge impedance. However, it is very difficult to apply the semiconduction screen for EMTP model because of the number of conductors limitation. Therefore, CIGRE WG 21-05 proposed advanced insulation structure and analysis technique of simplified approach including inner and outer semiconducting screen. In this paper, the various propagation characteristics analyse using this structure and technique for 154kV XLPE $2000mm^2$ cable. The frequency independent model of EMTP CABLE PARAMETER is used for just pattern analysis of propagation characteristics. For exact data analysis, the frequency dependent model of J-marti is used for EMTP modeling. From these result, various propagation characteristics of 154kV XLPE $2000mm^2$ cable according to semi conducting screen consideration, frequency range, cable length and pulse width are analysed. In addition, in this paper, the effects of cross-bonding are also variously discussed according to cross-bonding methods, direct connection and impedance of lead cable.

Mechanism analysis on fluidelastic instability of tube bundles in considering of cross-flow effects

  • Lai, Jiang;Sun, Lei;Gao, Lixia;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.310-316
    • /
    • 2019
  • Fluidelastic instability is a key issue in steam generator tube bundles subjected in cross-flow. With a low flow velocity, a large amplitude vibration of the tube observed by many researchers. However, the mechanism of this vibration is seldom analyzed. In this paper, the mechanism of cross-flow effects on fluidelastic instability of tube bundles was investigated. Analysis reveals that when the system reaches the critical state, there would be two forms, with two critical velocities, and thus two expressions for the critical velocities were obtained. Fluidelastic instability experiment and numerical analysis were conducted to obtain the critical velocity. And, if system damping is small, with increases of the flow velocity, the stability behavior of tube array changes. At a certain flow velocity, the stability of tube array reaches the first critical state, a dynamic bifurcation occurs. The tube array returns to a stable state with continues to increase the flow velocity. At another certain flow velocity, the stability of tube array reaches the second critical state, another dynamic bifurcation occurs. However, if system damping is big, there is only one critical state with increases the flow velocity. Compared the results of experiments to numerical analysis, it shows a good agreement.

Effects of floating wave barriers on wave-induced forces exerted to offshore-jacket structure

  • Osgouei, Arash Dalili;Poursorkhabi, Ramin Vafaei;Hosseini, Hamed;Qader, Diyar N.;Maleki, Ahmad;Ahmadi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.53-66
    • /
    • 2022
  • The main objective of the present research was investigating the effects of a floating wave barrier installed in front of an offshore jacket structure on the wave height, base shear, and overturning moment. A jacket model with the height of 4.55 m was fabricated and tested in the 402 m-long wave flume of NIMALA marine laboratory. The jacket was tested at the water depth of 4 m subjected to the random waves with a JONSWAP energy spectrum. Three input wave heights were chosen for the tests: 20 cm, 23 cm, and 28 cm. Two different cross sections with the same area were selected for the wave barrier: square and rhombus. Results showed that the average decrease in the jacket's base shear due to the presence of a floating wave barrier with square and rhombus cross section was 24.67% and 34.29%, respectively. The use of wave barriers with square and rhombus cross sections also resulted in 19.78% and 33.11% decrease in the jacket's overturning moment, respectively. Hence, it can be concluded that a floating wave barrier can significantly reduce the base shear and overturning moment in an offshore jacket structure; and a rhombus cross section is more effective than an equivalent square section.