• Title/Summary/Keyword: Cross Tensile Strength

Search Result 372, Processing Time 0.024 seconds

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Repairing Damaged Hair Using Pentapeptides of Various Amino Acid Sequences with Crosslinking Reaction

  • Choi, Wonkyung;Son, Seongkil;Song, Sang-Hun;Kang, Nae Gyu;Park, Sun-gyoo
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • The aim of this study is to investigate the effect of various pentapeptides on hair repair depending on the characteristics of comprising amino acids using crosslinking agents in hair. Total ten peptides were synthesized with two kinds of amino acids respectively, of which were previously categorized according to R group of the amino acids contributing to the characteristic of each peptide: STTSS (Ser-Thr-Thr-Ser-Ser), LIILL (Leu-Ile-Ile-Leu-Leu), CMMCC (Cys-Met-Met-Cys-Cys), DEEDD (Asp-Glu-Glu-Asp-Asp), RKKRR (Arg-Lys-Lys-Arg-Arg), TAMRA-STTSS, TAMRA-LIILL, TAMRA-CMMCC, TAMRA-DEEDD, and TAMRA-RKKRR. Pentapeptide alone, or pentapeptides with crosslinking agents such as polymeric carbodiimide (PCI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were treated to chemically damaged hair. Hair diameter and break strength (N = 40/case) were measured to calculate tensile strength of hair for computing hair repair ratio, and fluorescence yields (N = 20/case) were collected for hair treated with TAMRA-peptides. The tensile strength of hair treated with pentapeptides alone, or pentapeptides with cross-linking agents is consistent with the fluorescence yield from the microscope images of the cross-sectioned hair in vision and in numerical values. Pentapeptides consisting of hydrophobic amino acids (LIILL), amino acids with sulfur (CMMCC), and basic amino acids (RKKRR) increased the tensile strength in perm-damaged hair. Pentapeptides with no extra carboxyl/amine groups in R group of amino acids resulted in no significant differences in hair strength and fluorescence yield among hairs treated with alone and with crosslinkers. Pentapeptides with extra carboxyl groups or amine groups enabled further strengthening of hair due to increased bonds within the hair after carbodiimide coupling reaction. The hair repairs of pentapeptides with various amino acid sequences were studied using crosslinking. Depending on the physical characteristics of comprising amino acids, the restoration of damaged hair was observed with tensile strength of hair and fluorescence signals upon cross-sectioned hair in parallel to possibly understand the binding tendency of each pentapeptide within the hair.

Quality Evaluation of Resistance Spot Welding using Acoustic Emission (음향방출을 이용한 저항 점용접의 용접 품질평가)

  • Jo Dae-Hee;Rhee Zhang-Kyu;Park Sung-Oan;Cho Jin-Ho;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2006
  • In this paper, for the purpose of investigation the acoustic emission(AE) behaviors during resistance spot welding process and tension test of spec steels. As the results present the resistance spot welding method that can get suitable welding qualities or structural integrity estimating method. The resistance spot welding process consists of several stages: set-down of the electrodes; squeeze; current flow; forging; hold time; and lift-off. Various types of AE signals are produced during each of these stages. For tensile-shear test and cross tensile test in resistance spot welded specimens, fracture pa 야 ems are produced: tear fracture; shear fracture; and plug fracture. Tensile-shear specimens strength appeared higher than cross tensile specimens one. In case of tensile-shear specimen happened tear fracture that crack happens in most lower plate. Also, in case of cross tensile specimens, upper plate and lower plate are detached perfect fracture was exposed increases a little as acting force is lower than ordinary welding condition. Therefore, the structure which is combined by resistance spot welding confirmed that welding design must attain so that shear stress may can interact mainly.

Effect of Specimen Geometry on Bending and Tensile Strength of Material Used in Dissimilar Joints (이종 접합재의 굽힘 및 인장강도에 미치는 시험편 형상의 효과)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.341-346
    • /
    • 2010
  • The effect of specimen geometry on the bending and tensile strengths of dissimilar joints ($\beta-Si_3N_4/S45C$) with copper interlayers was evaluated. The average bending strength of specimens with circular cross sections was higher than that of specimens with rectangular cross sections. The crack initiation stress ($\sigma_i$) was successfully determined by the acoustic emission (AE) method and was approximately 60~80% of the bending strength. The residual stresses near the interfaces on the ceramic side were measured by X-ray diffraction before conducting the bending test. The bending strength and the crack initiation stress decreased with an increase in the residual stresses. The effect of the bending strain component was evaluated by the tensile testing; the tensile strength decreased with an increase in the bending strain component and was approximately 80% of the bending strength.

Tension Stiffening Effects of MMA-Modified Polymer Concrete (MMA 개질 폴리머 콘크리트의 인장증강 효과)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • Direct tensile tests were carried out for the tensile members of MMA-modified polymer concrete with different steel kinds and steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, MMA-modified polymer concrete with $1000\;kgf/cm^2$ of compressive strength, steel with $5200\;kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel kinds, diameters and steel content, the strain energy exerted by concrete till the initial crack was $14-15\%$ of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of MMA-modified polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of MMA-modified polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and resign for the polymer concrete structural members.

  • PDF

Tension Stiffening of Reinforced Polymer Concrete Tension member (철근보강 폴리머 콘크리트 인장부재의 인장강성)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Jo, Kyu-Woo;Kweon, Taek-Jong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.387-390
    • /
    • 2003
  • Direct tensile tests were carried out for the tensile members of steel-reinforced polymer concrete with different steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, polymer concrete with $1000kgf/cm^2$ of compressive strength, steel with $5200kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel diameters and steel content, the strain energy exerted by concrete till the initial crack was 14-15% of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of steel-reinforced polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of steel-reinforced polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and design for the polymer concrete structural members.

  • PDF

Fatigue Strength Evaluation of Mechanical Press Joints of Cold Rolled Steel Sheet under Cross-Tension Loading (냉간압연강 판재 기계적 접합부의 십자형 인장 하중하에서의 피로강도)

  • Kim, Jong-Bong;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, for the evaluation of the static and fatigue joining strength of the joint, the geometry of the cross-tension specimen was adopted. The specimens were produced with optimal joining force and fatigue life of the clinch joint specimens was evaluated. The material selected for use in this study was cold rolled mild steel (SPCC) with a thickness of 0.8 mm. The maximum tensile load was 708 N for the specimen with single point. The fatigue endurance limit (=42.6 N) per point approached to 6% of the maximum tensile strength at a load ratio of 0.1, suggesting that the joints are vulnerable to cross-tension loading during fatigue. Compared to equivalent stress and maximum principal stress, the SWT fatigue parameter and equivalent strain can properly predict the current experimental fatigue life. The SWT parameter can be expressed as $SWT=2497.5N^{-0.552)_f$.

A Statistical. Properties of Tensile Behaviors of STS304 Stainless Steel at Elevated Temperature and the Acoustic Emission (STS304 스테인리스강의 고온 인장거동의 통계적 특성과 음향방출)

  • Kwak, Myung-Kyu;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.68-74
    • /
    • 2002
  • The tensile tests to identify the statistical tensile properties and the acoustic emission characteristics were conducted for STS304 stainless steel at $600^{\circ}C,\;700^{\circ}C$. From tensile tests performed by constant cross head speed controls with 1mm/min, rates at each elevated temperature, the scatters were observed in tensile strength, reduction of area, elongation and the acoustic emission parameters. The effect of temperature on the scatter of tensile behavior was larger at $700^{\circ}C$. The distributions of tensile properties was well followed in 3-parameter Weibull. The AE counts and energy of the $700^{\circ}C$ specimens were smaller than the $600^{\circ}C$.

  • PDF

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

Mechanical characteristics of Macro-Fiber Reinforced Concrete Pavement (매크로 섬유로 보강된 콘크리트 포장의 역학적 특성)

  • Choi, Sung-Yong;Jung, Woo-Tai;Park, Jong-Sup
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.171-174
    • /
    • 2009
  • This study analyzes the change of the basic characteristics of pavement concrete according to the reinforcement of macro-fiber and the results of the study can be summarized as follows. In the case of the compressive strength of the concrete, the fiber reinforced pavement concrete shows a small decreasing level compared to the basic mixing of pavement concrete (hereafter referred as 'Plain') based on the aging of 28 days. In particular, the polypropylene fiber made in Korea represents a decrease in the strength about 12% compared with that of the Plain. In the case of the tensile strength, it shows certain improvements in the tensile performance compared with that of the Plain. In particular, in the case of the polyvinyl alcohol fiber that shows the largest improvement in tensile performance, it shows an increase in its strength about 21%. In the case of the bending strength, there are no improvements in its strength in the fiber reinforced concrete compared to that of the Plain.

  • PDF