• Title/Summary/Keyword: Cross Spectral Density Analysis

Search Result 35, Processing Time 0.024 seconds

Effect of Excess Air and Superficial Air Velocity on Operation Characteristics in a Fluidized Bed Coal Combustor (공탑속도 및 과잉공기비에 따른 석탄유동층연소로의 조업특성)

  • 장현태;차왕석;태범석
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.84-92
    • /
    • 1999
  • The effects of air velocity and excess air on combustion characteristics were studied in a fluidized bed combustor. The domestic low-grade anthracite coal with heating value of 2010 kcal/kg and the imported bituminous coal from Australia with heating value of 6520 kcal/kg were used as coal samples. The combustion characteristics of mixed fuels in a fluidized bed combustor could be interpreted by pressure fluctuation properties, ash distribution and gas emission. The properties of the pressure fluctuations, such as the standard deviation, cross-correlation function, dominant frequency and the power spectral density function, were obtained from the statistical analysis. From this study, the combustion region increased with increasing air velocity but decreased with excess air due to combustion characteristics of anthracite and bituminous coal.

  • PDF

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Time Series Analysis of Groundwater Level Change in the Chuncheon Area Groundwater Observation Network (시계열 분석을 이용한 춘천 지역 지하수관측망 수위변동 해석)

  • Mok, Jong-Koo;Jang, Bum-Ju;Park, Yu-Chul;Shin, Hye-Soo;Kim, Jin-Ho;Song, Se-Jeong;Hawng, Ga-Young
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.281-293
    • /
    • 2022
  • Time series analysis was performed on data from 2009 to 2018 from the Chuncheon groundwater observation network to understand the characteristics of groundwater level fluctuations in the network. There are five observatories, all of which are installed in rock aquifers, and periodic inspections and management are performed by the relevant operating organization. Auto-correlation, spectral density, and cross-correlation analysis was performed.

Correlation Analysis of Aerodynamic Forces acting on Tall Buildings with Various Side Ratios (다양한 변장비를 가진 고층건축물에 작용하는 풍력의 상관 분석)

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • The objective of this study is to construct the TPU aerodynamic database with wind tunnel test data of overall wind loads and responses on tall buildings. In this study, wind tunnel tests were conducted to investigate characteristics of wind forces and the effect of wind load combination by cross-correlation analysis among along-wind overturning moment, across-wind overturning moment and torsional moment on a tall building with various side ratios(D/B=0.33, 0.50, 0.77, 0.83, 0.91, 1.0, 1.1, 1.2, 1.3, 2.0 and 3.0) for different terrain roughnesses. The results of wind tunnel tests were compared with those of past literatures. As a result, there was no significant effects of changing of terrain roughnesses on moment coefficients and power spectral densities of across-wind overturning moment coefficients and torsional moment coefficients with various side ratios. Further, these results were good agreement with those of past literatures. From cross-correlation analysis, the across-wind overturning moment coefficients were highly correlated with the torsional moment coefficients. The results of this study will be helpful for practical designers in preliminary design stage.

Vibration of vehicle-bridge coupling system with measured correlated road surface roughness

  • Han, Wanshui;Yuan, Sujing;Ma, Lin
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.315-331
    • /
    • 2014
  • The present study investigated the effect of the correlation of the measured road roughness profiles corresponding to the left and right wheels of a vehicle on the vibration of a vehicle-bridge coupling system. Four sets of road roughness profiles were measured by a laser road-testing vehicle. A correlation analysis was carried out on the four roughness samples, and two samples with the strongest correlation and weakest correlation were selected for the power spectral density, autocorrelation and cross-correlation analyses. The scenario of a three-axle truck moving across a rigid-frame arch bridge was used as an example. The two selected road roughness profiles were used as inputs to the vehicle-bridge coupling system. Three different input modes were adopted in the numerical analysis: (1) using the measured road roughness profile of the left wheel for the input of both wheels in the numerical simulation; (2) using the measured road roughness profile of the right wheel for both wheels; and (3) using the measured road roughness profiles corresponding to left and right wheels for the input corresponding to the vehicle's left and right wheels, respectively. The influence of the three input modes on the vibration of the vehicle-bridge system was analyzed and compared in detail. The results show that the correlation of the road roughness profiles corresponding to left and right wheels and the selected roughness input mode both have a significant influence on the vibration of the vehicle-bridge coupling system.

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

Correlation analysis of the wind of a cable-stayed bridge based on field monitoring

  • Li, Hui;Laima, Shujin;Li, Na;Ou, Jinping;Duan, Zhondong
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.529-556
    • /
    • 2010
  • This paper investigates the correlation of wind characteristics monitored on a cable-stayed bridge. Total five anemoscopes are implemented into the bridge. Two out of 5 anemoscopes in inflow and two out of 5 anemoscopes in wake-flow along the longitudinal direction of the bridge are installed. Four anemoscopes are respectively distributed at two cross-sections. Another anemoscope is installed at the top of the tower. The correlation of mean wind speed and direction, power spectral density, the turbulent intensity and integral length of wind in flow at two cross-sections are investigated. In addition, considering the non-stationary characteristics of wind, the spatial correlation in time-frequency is analyzed using wavelet transform and different phenomenon from those obtained through FFT is observed. The time-frequency analysis further indicates that intermittence, coherence structures and self-similar structures are distinctly observed from fluctuant wind. The flow characteristics around the bridge deck at two positions are also investigated using the field measurement. The results indicate that the mean wind speed decrease when the flow passing through the deck, but the turbulence intensity become much larger and the turbulence integral lengths become much smaller compared with those of inflow. The relationship of RMS (root mean square) of wake-flow and the mean wind speed of inflow is approximately linear. The special structures of wake-flow in time-frequency domain are also analyzed using wavelet transform, which aids to reveal the forming process of wake-flow.

Comparison of Soil Permeability and Time-Series Variation of Soil Moisture in Areas with Different Land Use in an Agricultural Region of Gangwon Province, Korea (강원도 농촌지역에서 토지이용에 따른 토양수분의 시계열적 변동 특성 및 토양 투수성 비교)

  • Lee, Minwook;Lee, Sungbeen;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.483-498
    • /
    • 2022
  • Soil moisture is defined as water in the pores of the soil's unsaturated zone, and it is closely related to various hydrological processes. This study aims to provide meaningful data by identifying factors affecting soil moisture through comparing soil moisture content and soil permeability in a study area covering six different land use types in an agricultural region that is highly dependent on groundwater. We conduct auto-correlation analysis, spectral density analysis, and cross-correlation analysis using time-series data. Soil moisture content shows to have weak auto-correlation and memory effects, and precipitation appears to have a substantial influence on soil moisture content. Saturation hydraulic conductivity does not vary markedly with changing land use, and instead appears to be affected by the inhomogenous soil structure.

The Spectral Characteristics of Climatological Variables over the Asian Dust Source Regions and its Association with Particle Concentrations in Busan (황사 발원지 기후자료의 시계열 특성과 부산지역 먼지 농도의 연관성 분석)

  • Son, Hye-Young;Kim, Cheol-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.734-743
    • /
    • 2009
  • In order to examine how climatological condition can influence on urban scale particulate air pollutants, single and cross spectrum analysis have been performed to daily mean concentrations of particulate matters ($PM_{10}$) in Busan together with the climatological variables over the Asian dust source regions. Single power spectrum analysis of $PM_{10}$ concentrations in Busan shows that, aside from the typical and well-known periodicities, 3-4 year of peak periodicity of power spectrum density was identified. In cross spectrum analysis, this 3-4 year periodicity is found to have a strong positive correlation with the wind speed and pressure, and negative with the temperature and relative humidity, which is rather consistent with both characteristics of air mass during the Asian dust event whose periodicities have been recorded inter-annually over the Korean urban cities. Over the Asian dust source regions, $PM_{10}$ vs. precipitation shows no significant periodicity from the time series of precipitation data, but the periodicity of EDI (Effective Drought Index) shows some interannual variabilities ranging from 2 to 4 years over the various source regions, suggesting that, rather than precipitation itself, the EDI could be more closely associated with the occurrence frequency of Asian dust and interannual variability of urban particle concentrations in Korean cities.

Interpretating the Spectral Characteristics of Measured Particle Concentrations in Busan (부산지역 대기측정망 자료에 나타난 미세먼지 농도의 시계열 해석)

  • Son, Hye-Young;Kim, Cheol-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • In order to examine the effects of micrometeorological and climatological influences on urban scale particulate air pollutants observed in Busan, power spectrum analysis was applied to the observed particulate matter with aerodynamic diameter ${\le}10{\mu}m$ ($PM_{10}$) for the period from 1991 to 2006. Power spectrum analysis has been employed to the daily mean $PM_{10}$ concentrations obtained at 13 sites to identify different scales of periodicities of $PM_{10}$ concentrations. The results show that, aside from the typical and well-known periodicities such as diurnal and annual variations caused by anthropogenic emission influences, another two significant peaks of power spectrum density were identified: 21 day and $3{\sim}4$ year of periodicities. Cospectrum analysis indicates that the intraseasonal 21 day periodicity are found to be negatively correlated with wind speed and surface pressure but shows consistently positive with relative humidity and temperature. This result implied that 21 day periodicity is presumably relevant to the secondary aerosol formation processes through the photochemical reaction that can be subsequently resulted from hygroscopic characteristics of aerosol formation. However, the interannual $3{\sim}4$ year of periodicity is found to have positive correlation with pressure, and negative with temperature and relative humidity, which is rather consistent with both characteristics of air mass during the Asian dust event and the occurrence frequency of Asian dust whose periodicities have been recorded inter-annually over the Korean peninsula.