• Title/Summary/Keyword: Cross Jet

Search Result 170, Processing Time 0.025 seconds

A Study on Simultaneous Analysis of Velocity and Density Distributions for High-Speed $CO_{2}$ Flow (고속 이산화탄소 유동장의 속도 및 밀도 동시 분석에 관한 연구)

  • Kim Yong-Jae;Ko Han Seo;Okamoto Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.40-45
    • /
    • 2005
  • Velocity and density distributions of a high-speed and initial $CO_{2}$ jet flow have been analyzed simultaneously by a developed three-dimensional digital speckle tomography and a particle image velocimetry(PIV). Three high-speed cameras have been used for tomography and PIV since a shape of a nozzle for the jet flow is asymmetric and the initial flow is fast and unsteady, The speckle movements between no flow and $CO_{2}$ jet flow have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields for the high-speed $CO_{2}$ jet flow have been reconstructed from the deflection angles by a real-time tomography method and the two-dimensional velocity fields have been calculated by a PIV method simultaneously and instantaneously.

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Spray characteristics of impinging sprays introduced into the strongly convective flow (수직 간섭된 램공기 대류에 의한 충돌 분무의 미립화 촉진에 관한 연구)

  • Lee Sang-Seung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.384-394
    • /
    • 2005
  • Important characteristics of impinging sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spay data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline increase. The maximum SMD appeared the top of the SMD distribution

  • PDF

Spray characteristics of swirl sprays introduced into the strongly convective flow (수직 간섭된 램공기 대류에 의한 스월 분무의 미립화 촉진에 관한 연구)

  • Lee Sang-Seung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.395-406
    • /
    • 2005
  • Important characteristics of swirl sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spray data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline first increases and then decreases before again increasing.

  • PDF

Simultaneous Measurements of Temperature and Velocity Fields of a Buoyant Jet Using LIE and PIV Techniques (LIE와 PIV 기법을 이용한 부력제트의 온도장과 속도장 동시측정)

  • Kim Seok;Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.513-516
    • /
    • 2002
  • The flow structure and heat transfer characteristics of a turbulent buoyant jet were investigated experimentally. The instantaneous temperature and velocity fields in the near field were measured using a two-frame PIV and PLIF techniques. A thin light sheet illuminated a two-dimensional cross section of the buoyant jet in which Rhodamine B was added as a fluorescent dye. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured by a CCD camera after passing an optical filter. By ensemble averaging the instantaneous temperature and velocity fields, the mean temperature and velocity fields as well as the spatial distributions of turbulent statistics were obtained. The results show the flow structure and convective heat transfer of the developing shear layer in the near field.

  • PDF

Supersonic Jet Noise Control via Trailing Edge Modifications

  • Kim, Jin-Hwa;Lee, Seungbae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1174-1180
    • /
    • 2001
  • Various experimental data, including mixing areas, cross correlation factors, surface flow patterns on nozzle walls, and far field noise spectra, was used to draw a noise control mechanism in a supersonic jet. In the underexpanded case, mixing of the jet air with ambient air was significantly enhanced as presented before, and mixing noise was also dramatically reduced. Screech tones, in the overexpanded case, were effectively suppressed by trailing edge modifications, although mixing enhancement was not noticeable. From mixing and noise performance of nozzles with modified trailing edges, enhancing mixing through streamwise vortices seems an effective way to reduce mixing noise in the underexpanded flow regime. However, screech tones in the overespanded flow regime is well controlled or suppressed by making shock cells and/or spanwise large scale structures irregular and/or less organized by a proper selection of trailing edges. The noise field in the overexpanded flow regime was greatly affected by the symmetricity of the nozzle exit geometry. In the underexpanded flow regime, the effects of the symmetricity of the nozzle exit on mixing were negligible.

  • PDF

Buoyant Slot Jets in Flowing Environment (가로흐름에 방류(放流)되는 평면부력(平面浮力)?)

  • Yoon, Tae Hoon;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.53-60
    • /
    • 1988
  • The behavior of plane buoyant jet issuing vertically upwards into cross flow is analysed by experiments and integral scheme. The integral scheme is based on the self similarity and characteristic length scales to governing equations of continuity, momentum and constituent transport equation, in the horizontal and vertical flow region, respectively. Jet trajectories and the temperature distributions of jet centerlines obtained from experiments are analysed for various velocity ratios and densimetric Froude numbers. It was found that the analytical results about the trajectories and temperatures of jet center lines agree with the experiments and can be expressed as power laws.

  • PDF

Fluidic Characteristics of Precessing Jet Nozzle Combustor (세차제트노즐 연소기의 유동특성)

  • Lee, Hye-Young;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Many processing companies are facing environmental regulations such as decreasing NOx emissions when they by to increase thermal efficiencies of combustor. We study a potential new method that may achieve both increase of thermal efficiency and decrease of NOx emissions. This new concept of burner, the precessing jet burner, is known to significantly reduce pollutants such as NOx emissions and simultaneously increase radial heat transfer. This precessing jet nozzle may increase the combustion efficiency of gas turbine engine. A basic research on characteristics of precessing jet nozzle has been conducted using FLUENT and laser visualization technique. Velocities at He nozzle cross-section are compared with the published experimental results. Precessing jet nozzle with centerbody results in better precessing phenomena.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Trace Gas Method under the Presence of Some Cross-draft (방해기류 존재시 추적자 가스법을 이용한 푸쉬풀 후드 효율 평가)

  • Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.290-301
    • /
    • 2006
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank. Efficiency of push pull hood system is affected by various parameters, such as, cross draft, vessel shapes, tank surface area, liquid temperature. A previous work assisted by flow visualization technique qualitatively showed that a strong cross draft blown from the pull hood to push slot could destroy a stable wall-jet on the surface of tank, resulting in the abrupt escape of smoke from the surface. In this study, the tracer gas method was applied to determine the effect of cross-draft on the capture efficiency qualitatively. A new concept of capture efficiency was introduced, that is, linear efficiency. This can be determined by measuring the mass of tracer gas in the duct of pull hood while the linear tracer source is in between push slot and pull hood. By traversing the linear tracer source from the push slot to the pull hood, it can be found where the contaminant is escaped from the tank. Total capture efficiency can be determined by averaging the linear efficiencies. Under the condition of cross-draft velocities of 0, 0.4, 0.75, 1.05 and 1.47m/s, total capture efficiencies were measured as 97.6, 95.4, 94.6, 92.7 and 70.5% respectively. The abrupt reduction of efficiency with cross-draft velocity of 1.47m/s was due to the destruction of tank surface wall-jet by the counter-current cross-draft. The same phenomenon was observed in the previous flow visualization study. As an alternative to overcome this abrupt efficiency drop, the 20% increase of hood flow rates was tested, resulting in 20% efficiency increase.

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.