• 제목/요약/키워드: Cropwat model

검색결과 5건 처리시간 0.022초

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

쌀 농업에 대한 지역별 물 발자국 산정에 관한 연구 (A Study about Regional Water Footprint of Rice Production in Agriculture Industry)

  • 김준범;강헌;신상민
    • 대한환경공학회지
    • /
    • 제35권11호
    • /
    • pp.827-834
    • /
    • 2013
  • 물 발자국(Water footprint)은 단위 제품 및 단위 서비스 생산 전과정(life cycle) 동안 직접 및 간접적으로 이용되는 물의 총량지표를 나타내는 것을 의미한다. 현재까지 산업별 및 제품에 대한 물 사용량과 관련된 자료가 잘 구축되어져 있지 않으며 특히 많은 물이 사용되어지는 농업 생산 제품에 대한 물 사용량에 대한 자료는 전무하다고 할 수 있기 때문에 각 제품에 대한 물 사용량 자료 구축은 중요하다고 할 수 있다. 본 연구에서는 우리나라의 수자원 이용 형태 중에서 가장 큰 부분을 차지하는 산업 분야인 농업 산업에서 쌀 생산을 중심으로 8개 지자체(강원, 경기, 경북, 경남, 전남, 전북, 충북, 충남)를 범위로 하였으며, Cropwat 8.0 모델을 이용하여 물 사용량을 산정하였다. 본 연구의 결과로 쌀 제품의 간접적인 물 사용량은 경북 지역이 $1,356.68m^3/ton$으로 가장 적은 물 사용량을 가졌으며, 전남지역이 $1,669.54m^3/ton$로 가장 많은 물이 사용되는 것으로 산정되었다. 8개 지자체의 평균적인 물 사용량은 $1,487.87m^3/ton$으로 산정되었으며, 쌀 밥 한 그릇 양의 밥(130 g)을 지을 때 쓰이는 직접 물의 사용량 및 간접 물 사용량을 고려한 총 물 발자국 산정 값은 193.61L로 산정되었다. 본 연구결과를 바탕으로 농업 분야 및 전 산업 분야로 확장하여 제품별 물발자국 산정이 필요하며 데이터베이스 구축이 필요하리라 사료된다.

파키스탄 UCC 관개지역 밀·쌀 재배 필요수량에 대한 기후변화 영향 (Climatic Influence on the Water Requirement of Wheat-Rice Cropping System in UCC Command Area of Pakistan)

  • 미르자 주네이드 아흐메드;최경숙
    • 한국농공학회논문집
    • /
    • 제60권5호
    • /
    • pp.69-80
    • /
    • 2018
  • This study investigated climate change influences over crop water requirement (CWR) and irrigation water requirement (IWR) of the wheat-rice cropping system of Upper Chenab Canal (UCC) command in Punjab Province, Pakistan. PRECIS simulated delta-change climate projections under the A1B scenario were used to project future climate during two-time slices: 2030s (2021-2050) and 2060s (2051-2080) against baseline climatology (1980-2010). CROPWAT model was used to simulate future CWRs and IWRs of the crops. Projections suggested that future climate of the study area would be much hotter than the baseline period with minor rainfall increments. The probable temperature rise increased CWRs and IWRs for both the crops. Wheat CWR was more sensitive to climate-induced temperature variations than rice. However, projected winter/wheat seasonal rainfall increments were satisfactorily higher to compensate for the elevated wheat CWRs; but predicted increments in summer/rice seasonal rainfalls were not enough to complement change rate of the rice CWRs. Thus, predicted wheat IWRs displayed a marginal and rice IWRs displayed a substantial rise. This suggested that future wheat production might withstand the climatic influences by end of the 2030s, but would not sustain the 2060s climatic conditions; whereas, the rice might not be able to bear the future climate-change impacts even by end of the 2030s. In conclusion, the temperature during the winter season and rainfall during the summer season were important climate variables controlling water requirements and crop production in the study area.

파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정 (Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan)

  • 미르자 주네드 아흐메드;최경숙
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Simulation of IWR Based on Different Climate Scenarios

  • Junaid, Ahmad Mirza;Arshad, M.;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.519-519
    • /
    • 2016
  • Upper Chenab Canal (UCC) is a non-perennial canal in Punjab Province of Pakistan which provides irrigation water only in summer season. Winter and summer are two distinct cropping season with an average rainfall of about 161 mm and 700 mm respectively. Wheat-rice is common crop rotation being followed in the UCC command area. During winter season, groundwater and rainfall are the main sources of irrigation while canal and ground water is used to fulfil the crop water requirements (CWR) during summer. The objective of current study is to estimate how the irrigation water requirements (IWR) of the two crops are going to change under different conditions of temperature and rainfall. For this purpose, 12 different climatic scenarios were designed by combining the assumptions of three levels of temperature increase under dry, normal and wet conditions of rainfall. Weather records of 13 years (2000-2012) were obtained from PMD (Pakistan Meteorological Department) and CROPWAT model was used to simulate the IWR of the crops under normal and scenarios based climatic conditions. Both crops showed a maximum increase in CWR for temperature rise of $+2^{\circ}C$ i.e. 8.69% and 6% as compared to average. Maximum increment (4.1% and 17.51% respectively) in IWR for both wheat and rice was recorded when temperature rise of $+2^{\circ}C$ is coupled with dry rainfall conditions. March & April during winter and August & September during summer were the months with maximum irrigation requirements. Analysis also showed that no irrigation is needed for rice crop during May and June because of enough rainfall in this area.

  • PDF