• Title/Summary/Keyword: Crop yield

Search Result 4,157, Processing Time 0.032 seconds

Studies on Genetic Analysis by the Diallel Crosses in $F_2$ Generation of Cowpea(Vigna sinensis savi.) (동부 Diallel Cross$ F_2$세대의 유전분석에 관한 연구)

  • Kim, J.H.;Ko, M.S.;Chang, K.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.216-226
    • /
    • 1983
  • Genetic studies on the $F_2$ generation of a set of half diallel crosses involving six cowpea varieties were conducted. by the randomized block design with three replications to determine combining ability, gene action and the relationships between parents and their $F_2$ hybrids. The 12 agronomic characters namely, days to flowering, days from flowering to maturity, days to maturity, diameter of stem, length of internode, number of branches per plant, length of pod, number of pods per plant, number of grains per pod, number of grains per plant, 100 grain weight and grain weight per plot were observed, and the $F_2$ generation of this diallel set of crosses was analysed for each character according to the method by Jinks and Hayman. The results obtained are summarized as follows: 1. Vr-Wr graphical analyses; The following seven characters, days to flowering, number of branches per plant, length of pod, number of pods per plant, number of grains per plant, 100 grain weight and grain weight per plot appeared to be partially dominant, and over dominance was found for days from flowering to maturity, days to maturity, length of internode and number of grains per pod. But diameter of stem indicated partial dominance near complete dominance. 2. Estimates of genetic variance components; In the degree of dominance,. eight characters, that is, days to flowering, days from flowering to maturity, days to maturity, length of internode, number of pods per plant, number of grains per pod, number of grains per plant and grain weight per plot were expressed larger than 1. And the characters, days from flowering to maturity, number of branches per plant and number of grains per plant as the degree of mean dominance ($H_1$/D) were found to be negative value over other characters. On the other hand, apprent asymmetry of dominance-recessive allele ($H_2$ /$4H_1$) produced comparatively estimates with lower value on days from flowering to maturity, length of internode, number of branches per plant and number of grains per pod. 3. Analyses of combining ability; Mean square value of GCA(general combining ability) appeared to be more important than those of SCA (specific combining ability) for most characters, and among them, grain weight per plot showed the highest mean square value in GCA and SCA. 4. Effect of combining ability; Variety 178 was expressed as the highest GCA effects in five characters (days to flowering days to maturity, number of pods per plant, number of grains per plant and grain weight per plot). SCA effects were differed from parents, characters and crosses, but crosses between TVu 1857 $\times$ TVu 2885 and TVu 2702 $\times$ J78 were shown to be highly with SCA effects on yield.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF

Studies on the Breeding of the Response to short photoperiod, Fiber weight, and Qualitative characters and of the Associations Among these characters in Kenaf (섬유용양마의 육종에 관한 연구 -단일반응성과 섬유종의 유전 및 연소)

  • Johng-Moon Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.115-124
    • /
    • 1968
  • It was shown that the most desirable characters for kenaf are high-fiber weight and moderately early maturity. Therefore, the objectives of this research on this crop is to find varieties possessing these characteristics. The experiments covered in this report provided new information relative to segregation, mode of inheritance, estimate of the number of genes involved in fiber weight and their response to short day length of 10 hours and the qualitative characters, such as, color of stem, capsule, petiole and shape of leaves. The associations which exist among these characters are also indicated. Fiber weight per plant, days to flowering, Stem color, Petiole color, Capsule color, and shape of leaves were studied in parental, $F_1$.$F_2$and backcross populations of a cross between Dashkent, a low-fiber weight but early maturing kenaf variety, and G 38 F-1, a high-fiber weight but late maturing kenaf variety. Crosses were made using the varieties, Dashkent and G 38 F-1 as parents. The Dashkent parent had the following characteristics: green stems, capsules and petioles and lobed shaped leaves; 105.8234 mean-days to flowering in the field, and 106.9222 mean-days under 10 hours short day treatment. The other parent, G 38 F-1 had red stems yellow capsules and red petioles and unlobed shaped leaves; 149.8921 mean-days to flowering in the field, and 62.3684 mean-days under 10 hours short day treatment. Both of the parents, $F_1$, $F_2$, $BC_1$ ($F_1$ X Dashkent, ) and $BC_2$($F_1$ ${\times}$ G38F-1) of the kenaf cross were grown at the Crops Experiment Station, Suwon, Korea in 1965. Color of stems, petioles and capsules, and shape of leaves were noted to be simply inherited as a single factor. Red stem color was dominant over green stem color, red petiole color was dominant over green petiole, lobed shaped leaves were dominant over unlobed shaped leaves and yellow capsules were dominant over green capsule. It was, also, noted that the factor for color of petiole was linked with the factor for shape of leaf with a 11.9587 percent recombination value, however no interaction or linkage were found among the color of stem and capsule color. Using Powers partitioning method, theoretical means and frequency distributions for each population, the days to flowering were calculated with the assumption that two gene pairs were involved. The values obtained fitted the theoretical values. In general this would indicate that Dashkent and G 38 F -1 were differentiated by two gene pairs. Heritability values were calculated as the percent of additive genetic variance. Heritability value of days to flowering, 89.5% in the broad sense and 79.91% in the narrow sense, indicated that the selection for this character would be effective in relatively early generations. Particularly, high positive correlations were found between days to flowering and the color of petioles and shape of leaves. However, there was no relation between days to flowering and capsule color nor between these and stem color. On the basis of the results of this experiment there is evidence that the hereditary factor for shape of leaves and the color of petioles is linked with an effective factor or factors for the characters of days to flowering. The association was sufficiently close to offer a possible simple and efficient means of selection for moderately early mat. uring plants by leaf shape and petiole color selection. Again using Powers partitioning method the frequency distribution for each population to the fiber weight were calculated with the assumption that two gene pairs, AaBb, were involved. Both phenotypic and genotypic dominance were complete. The obtained value did not agree with the theoretical value for $F_2$ and $BC_1$ ($F_1$ ${\times}$ Dashkent.) It seems that Dashkent and G 38 F-1 were differentiated by two major gene pairs but some the other minor genes are necessary. It is certain that the hereditary factor for shape of leaves and color of petioles is linked with an effective factor or factors for fiber weight. Also, high. yielding plants with moderately early maturity were found in the $F_2$ population. Thus, simultaneous selection for high-fiber yield and moderately early maturing plants should be possible in these populations. Phenotypic and genotypic correlation coefficients between fiber weight per plant and days to flowering, stem height and stem diameter were calculated. In general, genotypic correlations are higher than the phenotypic correlation. The highest correlation is found between stem height and fiber weight per plant (0.7852 in genotypic and 0.4103 in phenotypic) and between days to flowering and fiber weight per plant (0.7398 in genotypic and 0.3983 in phenotypic.) It was also expected that the selection of high stem height and moderately early maturing plants were given the efficient means of selection for high fiber weight.

  • PDF

Studies on the Inheritance of Heading Date in Wheat(Triticum aestivum L. em Thell) (소맥(Triticum aestivum L. em Thell)의 출수기 유전에 관한 연구)

  • Chang-Hwan Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.15
    • /
    • pp.1-31
    • /
    • 1974
  • Introducing genes for earliness of wheat varieties is important to develop early varieties in winter wheat. In oder to obtain basic informations on the response of heading to the different day length and temperature treatments and on the inheritance of heading dates, experiments were conducted at the field and greenhouse of the Crop Experiment Station, Suwon. Varieties used in this experiments were, early variety Yecora F70, medium varieties Suke #169, Parker and Yukseung #3, and late varieties Changkwang, Bezostaia, Sturdy and Blueboy. The parents and F$_1$s of partial diallel crosses of above eight varieties were subjected the following four different treatments; 1. high temperature and long day, 2. high temperature and short day, 3. low temperature and long day, and 4. low temperature and short day. The same materials were grown also in field condition. Parents, F$_1$ and F$_2$ generation were grown also in both greenhouse under high temperature and short day and in field. The results obtained were summarized as follow: 1. No effects of temperature and daylength on the number of leaves on the main stem were found when -varieties were vernalized. The number of main stem leaves were fewer for spring type of varieties than for winter type of varieties. 2. The effects of temperature and daylength on the days to flag leaf opening were dependent on the speed of leaf emergence. The speed of leaf emergence were faster for lower leaves than for upper leaves. 3. The response to short day and long day (earliness of narrow sense) of varieties were found to be direct factor responsible to physiology of heading dates in vernalized varieties. Great difference of varieties to heading date was found in high temperature and short day treatment, but less differences were found in high temperature and long day, low temperature and long day and low temperature and short day treatments respectively. The least varietal difference for heading dates was found in the field condition. 4. Changkwang and Parker were found to be the most sensitive to short day treatment (photosensitive) and the heading of these varieties were delayed by short day treatment. No great varietal differences were found among other varieties. 5. Varietal differences of heading dates due to daylength were greater in high temperature than in low temperature. 6. Varietal differences of heading dates due to temperature were not great. but in general the heading dates of varieties were faster under high temperature than under low temperature. 7. Earliness of heading dates was due to partial dominance effect of genes involved in any condition. The degree of dominance was greater under short day than under long day treatment. 8. The varietal differences of heading date under high temperature and long day were due to earliness or narrow sense (response to long day) of varieties. The degree of dominance was greater for Yecora F70, spring type than for other winter type of varieties. No differences or less differences of degree of dominance was found among winter type of varieties. The estimated number of effective factor concerned in the earliness of narrow sense was one pair of allele with minor genes. 9. The insensitivity of varieties to short day treatment in heading dates was due to single dominant gene effect. Under the low temperature the sensitivity of varieties to short day treatment was less apparent. 10. The earliness of short day and long day (earliness of narrow sense) sensitivities of varieties appearea to be due to partial dominance of earliness over lateness. In strict sense, the degree of the dominance should be distinguished. 11. Dominant gene effects were found for the thermo-sensitivity of varieties, and the effect was less, significant than the earliness in narrow sense. 12. One pair of allele, ee and EE, for photosensitivity was responsible for the difference in the heading dates between Changkwang and Suke #169. Two pairs of alleles, ee, enen and EE, EnEn. appeared to be responsible for the difference between Changkwang and Yecora F70. The effects of EE and EnEn were, additive to the earliness and the effects of EE were greater than EnEn under short day. However, the effects of EE were not evident in long day but the effects of EnEn were observed in long day. 13. Two pairs of dominant alleles for the earliness were estimated from the analysis of F$_1$ diallels in the field but the effects of these alleles in F$_2$ were not apparent due to low temperature and short day treatment in early part of growth and high temperature and long day treatment in later part of growth. The F$_2$ population shows continuous variation due to environmental effects and due to other minor gene effects. 14. The heritabilities for heading dates were ranged from 0.51 to 0.72, indicating that the selection in early generation might be effective. The extent of heritability for heading dates varied with environments; higher magnitude of heritability was obtained in short day treatment and high temperature compared with long day and low temperature treatments. The heritabilities of heading date due to response to short day were 0.86 in high temperature and 0.76 in low temperature. The heritabilities of heading date due to temperature were not significantly high. 15. The correlation coefficients of heading dates to the number of grains per spike, weight of 1, 000 grains. and grain yield were positive and high, indicating the difficulties of selections of high yielding lines from early population. But no significant correlation coefficient was obtained between the earliness and the number of spikes, indicating the effective selection for high tillering from early varieties for high yielding.

  • PDF

Studies on the ecological variations of rice plant under the different seasonal cultures -I. Variations of the various agronomic characteristics of rice plant under the different seasonal cultures- (재배시기 이동에 의한 수도의 생태변이에 관한 연구 -I. 재배시기 이동에 의한 수도의 실용제형질의 변이-)

  • Hyun-Ok Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.1-40
    • /
    • 1965
  • To measure variations in some of the important agronomic characteristics of rice varieties under shifting of seedling dates, this study has been carried out at the Paddy Crop Division of Crop Experiment Station(then Agricultural Experiment Station) in Suwon for the period of three years 1958 to 1960. The varieties used in this study were Kwansan, Suwon #82, Mojo, Paltal and Chokwang, which have the different agronomic characteristics such as earliness and plant type. Seeds of each variety were sown at 14 different dates in 10-day interval starting on March 2. The seedlings were grown on seed bed for 30, 40, 50, 60, 70 and 80 days, respectively. The results of this study are as follows: A. Heading dates. 1. As the seeding date was delayed, the heading dates was almost proportionally delayed. The degree of delay was higher in early varieties and lower in late varieties and the longer the seedling stage, the more delayed the heading date. 2. Number of days to heading was proportionally lessened as seeding was delayed in all the varieties but the magnitude varied depending upon variety. In other words, the required period for heading in case of late planting was much shortened in late variety compared with early one. Within a variety, the number of days to heading was less shortened as the seedling stage was prolonged. Early variety reached earlier than late variety to the marginal date for the maximum shortening of days to heading and the longer the seeding stage, the limitted date came earlier. There was a certain limit in seeding date for shortening of days to heading as seeding was delayed, and days to heading were rather prolonged due to cold weather when seeded later than that date. 3. In linear regression equation, Y=a+bx obtained from the seeding dates and the number of days to heading, the coefficient b(shortening rate of days to heading) was closely correlated with the average number of days to heading. That is, the period from seeding to heading was more shortened in late variety than early one as seeding was delayed. 4. To the extent that the seedling stage is not so long and there is a linear relationship between delay of seeding and shortening of days to heading, it might be possible to predict heading date of a rice variety to be sown any date by using the linear regression obtained from variation of heading dates under the various seeding dates of the same variety. 5. It was found out that there was a close correlation between the numbers of days to heading in ordinary culture and the other ones. When a rice variety was planted during the period from the late part of March to the middle of June and the seedling ages were within 30 to 50 days, it could be possible to estimate heading date of the variety under late or early culture with the related data of ordinary culture. B. Maturing date. 6. Within (he marginal date for maturation of rice variety, maturing date was proportionally delayed as heading was delayed. Of course, the degree of delay depended upon varieties and seedling ages. The average air temperature (Y) during the ripening period of rice variety was getting lower as the heading date. (X) was delayed. Though there was a difference among varieties, in general, a linear regression equation(y=25.53-0.182X) could be obtained as far as heading date were within August 1 to September 13. 7. Depending upon earliness of a rice variety, the average air temperature during the ripening period were greatly different. Early variety underwent under 28$^{\circ}C$ in maximum while late variety matured under as low as 22$^{\circ}C$. 8. There was a highly significant correlation between the average air temperature (X) during the ripening period, and number of day (Y) for the maturation. And the relationship could be expressed as y=82.30-1.55X. When the average air temperature during the period was within the range of 18$^{\circ}C$ to 28$^{\circ}C$, the ripening period was shortened by 1.55 days with increase of 1$^{\circ}C$. Considering varieties, Kwansan was the highest in shortening the maturing period by 2.24 days and Suwon #82 was the lowest showing 0.78 days. It is certain that ripening of rice variety is accelerated at Suwon as the average air temperature increases within the range of 18$^{\circ}C$ to 28$^{\circ}C$. 9. Between number of days to heading (X) related to seeding dates and the accumulated average air temperature (Y) during the ripening period, a positive correlation was obtained. However, there was a little difference in the accumulated average air temperature during the ripening period even seeding dates were shifted to a certain extent. C. Culm- and ear-lengths. 10. In general all the varieties didn't show much variation in their culm-lengths in case of relatively early seeding but they trended to decrease the lengths as seeding was delayed. The magnitude of decreasing varied from young seedlings to old ones. Young seedlings which were seeded during May 21 to June 10 didn't decrease their culm-lengths, while seedlings old as 80 days decreased the length though under ordinary culture. 11. Variation in ear-length of rice varieties show the same trend as the culm-length subjected to the different seeding dates. When rice seedlings aged from 30 to 40 days, the ear-length remained constant but rice plants older than 40 days obviously decreased their ear-lengths. D. Number of panicles per hill. 12. The number of panicles per hill decreased up to a certain dates as seeding was delayed and then again increased the panicles due to the development of numerous tillers at the upper internodes. The seeding date to reach to the least number of panicles of rice variety depended upon the seedling ages. Thirty- to 40-day seedlings which were seeded during May 31 to June 10 developed the lowest number of panicles and 70- to 80-day seedlings sown for the period from April 11 to April 21 reached already to the minimum number of panicles. E. Number of rachillae. 13. To a certain seeding date, the number of rachillae didn't show any variation due to delay of seeding but it decreased remarkably when seeded later than the marginal date. 14. Variation in number of rachillae depended upon seedling ages. For example, 30- to 40-day old seedlings which, were originally seeded after May 31 started to decrease the rachillae. On the other hand, 80-day old seedlings which, were seeded on May 1 showed a tendency to decrease rachillae and the rice plant sown on May 31 could develop narrowly 3 or 4 panicles. F. Defective grain and 1.000-grain weights. 15. Under delay of the seeding dates, weight of the defective grains gradually increased till a certain date and then suddenly increased. These relationships could be expressed with two different linear regressions. 16. If it was assumed that the marginal date for ripening was the cross point of these two lines, the date seemed. closely related with seedling ages. The date was June 10- in 30- to 40-day old seedlings but that of 70- to 80-day old seedlings was May 1. Accordingly, the marginal date for ripening was getting earlier as the seedling stage was prolonged. 17. The 1.000-grain weight in ordinary culture was the heaviest and it decreased in both early and late cultures. G. Straw and rough rice weights. 18. Regardless of earliness of variety, rice plants under early culture which were seeded before March 22 or April 1 did not show much variation in straw weight due to seedling ages but in ordinary culture it gradually decreased and the degree was became greater in late culture. 19. Relationship between seeding dates (X) and grain weight related to varieties and seedling ages, could be expressed as a parabola analogous to a line (Y=77.28-7.44X$_1$-1.00lX$_2$). That is, grain yield didn't vary in early culture but it started to decrease when seeded later than a certain date, as seeding was delayed. The variation was much greater in cases of late planting and prolongation of seedling age. 20. Generally speaking, the relationship between grain yield (Y) and number of days to heading (X) was described with linear regression. However, the early varieties were the highest yielders within the range of 60 to 110, days to heading but the late variety greatly decreased its yield since it grows normally only under late culture. The grain yield, on the whole, didn't increase as number of days to heading exceeded more than 140 days.

  • PDF

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

Potential Benefits of Intercropping Corn with Runner Bean for Small-sized Farming System

  • Bildirici, N.;Aldemir, R.;Karsli, M.A.;Dogan, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.836-842
    • /
    • 2009
  • The objectives of this study were to evaluate potential benefits of intercropping of corn with runner bean for a smallsized farming system, based on land equivalent ratio (LER) and silage yield and quality of corn intercropped with runner bean (Phaseolus vulgaris L.), in arid conditions of Turkey under an irrigation system. This experiment was established as a split-plot design in a randomized complete block, with three replications and carried out over two (consecutive) years in 2006 and 2007. Seven different mixtures (runner bean, B and silage corn sole crop, C, 10% B+90% C, 20% B+80% C, 30% B+70% C, 40% B+60%C, and 50% B+50%C) of silage corn-runner bean were intercropped. All of the mixtures were grown under irrigation. The corn-runner bean fields were planted in the second week of May and harvested in the first week of September in both years. Green beans were harvested three times each year and green bean yields were recorded each time. After the 3rd harvest of green bean, residues of bean and corn together were randomly harvested from a 1 $m^{2}$ area by hand using a clipper when the bean started to dry and corn was at the dough stage. Green mass yields of each plot were recorded. Silages were prepared from each plot (triplicate) in 1 L mini-silos. After 60 d ensiling, subsamples were taken from this material for determination of dry matter (DM), pH, organic acids, chemical composition, and in vitro DM digestibility of silages. The LER index was also calculated to evaluate intercrop efficiencies with respect to sole crops. Average pH, acetic, propionic and butyric acid concentrations were similar but lactic acid and ammonia-N levels were significantly different (p<0.05) among different mixtures of bean intercropped with corn. Ammonia-N levels linearly increased from 0.90% to 2.218 as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio. While average CP content increased linearly from 6.47 to 12.45%, and average NDF and ADF contents decreased linearly from 56.17 to 44.88 and from 34.92 to 33.51%, respectively, (p<0.05) as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, but DM and OM contents did not differ among different mixtures of bean intercropped with corn (p>0.05). In vitro OM digestibility values differed significantly among bean-corn mixture silages (p<0.05). Fresh bean, herbage DM, IVOMD, ME yields, and LER index were significantly influenced by percentage of bean in the mixtures (p<0.01). As the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, yields of fresh bean (from 0 to 24,380 kg/ha) and CP (from 1,258.0 to 1,563.0 kg/ha) and LER values (from 1.0 to 1.775) linearly increased, but yields of herbage DM (from 19,670 to 12,550 kg/ha), IVOMD (from 12,790 to 8,020 kg/ha) and ME (46,230 to 29,000 Mcal/ha) yields decreased (p<0.05). In conclusion, all of the bean-corn mixtures provided a good silage and better CP concentrations. Even though forage yields decreased, the LER index linearly increased as the percentage of bean increased in the mixture up to a 50:50 seeding ratio, which indicates a greater utilization of land. Therefore, a 50:50 seeding ratio seemed to be best for optimal utilization of land in this study and to provide greater financial stability for labor-intensive, small farmers.

Optimization of Extraction Conditions for Dried Jujube by Response Surface Methodology (반응표면분석에 의한 건대추의 추출조건 최적화)

  • Woo, Koan-Sik;Lee, Sang-Hoon;Noh, Jin-Woo;Hwang, In-Guk;Lee, Youn-Ri;Park, Hee-Jeong;Lee, Jun-Soo;Kang, Tae-Su;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Extraction characteristics of dried jujube and functional properties of corresponding extract were monitored by response surface methodology. Maximum extraction yield of 53.69% was obtained at extraction temperature of $50.35^{\circ}C$, extraction time of 16.69 hr, and ethanol concentration of 72.88%. At extraction temperature, extraction time, and ethanol concentration of $45.80^{\circ}C$, 15.47 hr, and 73.12%, respectively, maximum cyclic adenosine monophosphate content was 8.20 mg/100 g. Maximum total polyphenol content was 18.85 mg/g at extraction temperature, extraction time, and ethanol concentration of $64.91^{\circ}C$, 20.84 hr, and 66.91%, respectively. Maximum total flavonoid content was 0.48 mg/g at extraction temperature, extraction time, and ethanol concentration of $57.36^{\circ}C$, 15.14 hr, and 71.08%, respectively. $IC_{50}$ value of electron donating ability showed maximum level of 32.34 mg/mL at extraction temperature of $48.46^{\circ}C$, extraction time of 19.25 hr, and ethanol concentration of 65.36%. Maximum ascorbic acid equivalent antioxidant capacity was 3.58 mg ascorbic acid equivalent per gram sample at extraction temperature, extraction time, and ethanol concentration of $56.09^{\circ}C$, 21.86 hr, and 65.36%, respectively.

Effects of Composted Pig Manure on Rice Cultivation in Paddy Soils of Different Texture (논토양검정에 의한 토성별 돈분퇴비 적정 시용량 결정)

  • Song, Yo-Sung;Kwak, Han-Kang;Hyun, Byung-Keun;Yeon, Byeong-Yeol;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.265-272
    • /
    • 2001
  • A manure compost has been identified as an alternative to fertilizer to increase soil fertility and crop production in farming fields. The aim of the present study was to evaluate the effects of pig manure compost on soil properties and rice productivity as well as to determine the optimum application rate. In 1997, a field experiment was carried out to evaluate the growth of rice on sandy loam, loam, and clay loam soils amended with 0, 5, 10, and $20Mg\;ha^{-1}$ of pig manure compost plus NPK, which decided by soil testing. Rice yields were higher in soils receiving manure compost amendment. The maxim um yields were evaluated with $7,520kg\;ha^{-1}$ in the levels of $4.2Mg\;ha^{-1}$ of pig manure compost application plus NPK in sandy loam, $7,320kg\;ha^{-1}$ in the levels of $10.7Mg\;ha^{-1}$ in loam, and $6,320kg\;ha^{-1}$ in $17.2Mg\;ha^{-1}$ in clay loam soil. The optimum application rate of pig manure compost, which decided for 95% of maximum yields, was $4.0Mg\;ha^{-1}$ in sandy loam and $7.0Mg\;ha^{-1}$ in loam and clay loam soils under the condition of chemical fertilization by soil diagnosis. An increase in rice yield indicated a better nutrient status in compost-amended soil which was supported by the higher nutrient contents of N, P and K in shoot of plants grown in soil with manure compost amendment. Addition of manure compost increased available phosphate, silicate and exchangeable K in the amended soils according to the rate of compost application rate. It can be concluded that the manure compost could be a suitable organic fertilizer for improving rice productivity and soil fertility, and an application rate of $4.0Mg\;ha^{-1}$ in sandy loam and $7.0Mg\;ha^{-1}$ in loam and clay loam soils would give the optimum rice yields in the standard fertilization by chemical fertilization.

  • PDF

Effect of Coated Urea Complex Fertilizer Application Levels on Growth and Grain Quality in Rice Cultural Methods (벼 재배양식별(栽培樣式別) 피복요소(被覆尿素) 복합비료(複合肥料)의 시용량(施用量)이 생육(生育) 및 미질(米質)에 미치는 영향)

  • Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.226-231
    • /
    • 1994
  • This experiment was conducted to evaluate the effect of coated urea complex fertilizer(CUC) on the growth and quality of rice in high-ridged dry seeding and infant -seedling machine transplanting on clay loam and sandy loam in Milyang, Korea, 1993. The CUC level applicated was 100 %, 80 %, 60% and 40% to standard application amount of fertilizer. Results obtained were as follows : 1. The nitrogen releasing rate in dry seeding was 83% for sandy loam, 81% in clay loam for 3.5 months after initial releasing, and in infant-seedling was 89% in both soil types for 4 months. 2. The degree of rice leaf color was the highest at the heading stage, and was high with increasing CUC application level regardless of cultural methods, especially was higher at harvesting stage in the 100% level of CUC to standard application amount of fertilizer than conventional fertilizer. 3. The perfect rice grain ratio was higher in infant-seedling than in dry seeding, but lowered with increasing CUC application level regardless of cultural methods. The green kerneled rice ratio among imperfect rice grain was high in dry seeding, and the notched belly rice kernel ratio was high in infant-than infant-seedling of the both soil types, and increased with increasing CUC application level. 4. Hon-value in rice grain was higher at the treatment of CUC application than conventional fertilizer in dry seeding. However, it was contrary result in infant seedling, and was low tendency with decreasing CUC application. On the other hand, the protein in rice grain was also same tendency of Hon-value. Cel-consistency related to eating quality was longer with increasing CUC application level regardless of cultural methods. However, there was no clear tendency at clay loam. 5. No significant difference between rice yield and CUC application in the range of 60% to 100% at both soil types in dry seeding was observed. These results appeared in clay loam under infant seedling except sandy loam. Accordingly, it was thought that 60% level of CUC to standard application amount of fertilizer could be applicated for growth and quality of rice.

  • PDF