• 제목/요약/키워드: Crop management system

검색결과 361건 처리시간 0.032초

CROP MANAGEMENT SYSTEM BASED ON HIGH SPATIAL RESOLUTION IMAGES

  • Kim Seong Joon;Kwon Hyung Joong;Park GeunAe;Lee Mi Seon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.257-259
    • /
    • 2005
  • A crop management system was developed using Visual Basic and ArcGIS VBA. The system is operated on ArcGlS 8.3 with Microsoft Access MOB. Landsat +ETM, KOMPSAT-l EOC, ASTER VNIR and IKONOS panchromatic (pan) and multi-spectral (MIS) images were included in the system to understand what kind of agriculture-related information can be extracted for each images. Agriculture related data inventories using crop cover information such as texture and average pixel value of the crop based on cultivation calendar were designed ,and implemented. Three IKONOS images (May 25,2001, December 25,2001, October 23,2003) were loaded in the system to show crop cover characteristics such as rice, pear, grape, red pepper, garlic, and surface water cover of reservoir with field surveys. GIS layers such as DEM (Digital Elevation Model), stream, road, soil, land use and administration boundary were also supplied and can be overlaid with images to enhance the understanding the general agricultural characteristics and identifying the location easily.

  • PDF

작물 생산률 향상을 위한 생장 환경 변화 탐지 CCMS(Crop Classification Management System) (CCMS (Crop Classification Management System) Detecting Growth Environment Changes to Improve Crop Production Rate)

  • 최호길;이병관;손수락;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.145-152
    • /
    • 2020
  • 본 논문에서는 작물의 생산 비율 향상을 위하여 생장 환경 변화를 탐지하는 CCMS(Crop Classification Management System)를 제안한다. CCMS는 첫째, CNN을 이용하여 이미지를 통해 작물의 종류를 구분하는 Crop Classification Module(CCM)과 둘째, 농장의 누적 데이터를 비교하여 농작물의 이상을 탐지하는 FADM(Farm Anomaly Detection Module)로 구성된다. CCMS의 CCM은 잎 이미지를 통하여 현재 농장에서 재배되는 작물을 인식하고 FADM에 전송하고, FADM은 해당 작물을 재배하는 농장의 과거부터 현재까지 기상데이터를 선택하여 그것을 넬슨 규칙에 적용한다. FADM은 넬슨 규칙을 통하여 이상이 발생한 기상데이터를 찾아내고, IoT 디바이스를 통하여 농장의 환경을 조절한다. CCMS의 성능분석 결과 CCMS의 CCM은 약 90%의 작물 분류 정확도를 갖고, FADM은 예측 수확량을 최대 약 30%가량 향상시키는 것으로 나타났다. 즉, CCMS를 통해 농장을 관리하는 것이 스마트 팜의 수확량 증가에 도움을 줄 수 있다.

Characteristics of Soybean Growth and Yield Using Precise Water Management System in Jeollanam-do

  • JinSil Choi;Dong-Kwan Kim;Shin-Young Park;Juhyun Im;Eunbyul Go;Hyunjeong Shim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.79-79
    • /
    • 2023
  • With the development of digital technology, the size of the smart agriculture market at home and abroad is rapidly expanding. It is necessary to establish a foundation for sustainable precision agriculture in order to respond to the aging of rural areas and labor shortages. This study was conducted to establish an automated digital agricultural test bed for soybean production management using data suitable for agricultural environmental conditions in Korea and to demonstrate the field of leading complexes. In order to manage water smartly, we installed a subsurface drip irrigation system in the upland field and an underground water level control system in the paddy field. Based on data collected from sensors, water management was controlled by utilizing an integrated control system. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. The main growth characteristics and yield, such as stem length, number of branches, and number of nodes of the main stem, were investigated during the main growth period. During the operation of the test bed, drought appeared during the early vegetative growth period and maturity period, but in the open field smart agriculture test bed, water was automatically supplied, reducing labor by 53% and increasing yield by 2%. A test bed was installed for each field digital farming element technology, and it is planned to verify it once more this year. In the future, we plan to expand the field digital farming technology developed for leading farmers to the field.

  • PDF

KISTI-ACOMS를 기반으로 한 한국작물학회 온라인논문투고관리시스템 개발 및 개선 방안 (Development and Improvement of the Online Article Contribution Management System Based on KISTI-ACOMS for the Korean Society of Crop Science)

  • 박재원;강무영;윤화묵
    • 한국작물학회지
    • /
    • 제49권6호
    • /
    • pp.552-562
    • /
    • 2004
  • KISTI는 학회업무 및 학술정보 관리를 학회가 어려움 없이 처리하도록 지원하고자, 학회 학술정보 유통체제 전 과정을 온라인 화하고 쉽게 관리할 수 있도록 한 ${\ulcorner}$KITTI­ACOMS (KISTI-Article COntribution Management System: KISTI-학회논문투고관리시스템)${\lrcorner}$을 개발하여 2001년부터 학회에 무상으로 보급하여 왔다. 최근 KISTI-ACOMS를 이용하고자 하는 학회의 요청이 더욱 확대되고 있어, KISTI는 많은 학회의 특성들을 의견수렴 하여, KISTI-ACOMS의 표준화를 목표로 보완해 나가고 있다. 본 연구논문의 구성은 다음과 같다. 1. KISTI-ACOMS 개요 설명. 2. KISTI-ACOMS를 기반으로 구축한 한국작물학회의 학회 논문투고관리시스템의 모듈별 기능 및 사용자 접근 권한에 따른 논문투고 심사 단계별 처리 방법 기술. 3. 향후 시스템에 필요한 기능 및 명세를 기술함으로써 한국작물학회 뿐만 아니라 KISTI-ACOMS를 기반으로 한 개선 된 온라인논문투고관리시스템을 제시.

Effects of Controlled Drainage Systems on Soybean (Glycine max L.) Growth and Soil Characteristics in Paddy Fields

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen Chung;Choi, Young Dae
    • 한국작물학회지
    • /
    • 제62권2호
    • /
    • pp.134-142
    • /
    • 2017
  • Crop production in rice paddy fields is of great importance because of declining rice consumption and the low self-sufficiency ratio for field crops in Korea. A controlled drainage system (CDS) is recognized as an effective means to adjust water table (WT) levels as needed and control soil water content to improve the soil environment for optimum crop growth. The present study evaluated the effects of a CDS on soil characteristics, including soil water distribution and soybean development in paddy fields. The CDS was installed with two drain spacing (3 m and 6 m) at the experimental paddy field at the National Institute of Crop Science, Miryang, Korea. It was managed with two WT levels (0.3 m and 0.6 m) during the growing season. Soil water content, electrical conductivity and plant available nitrogen content in the soil were significantly greater in the 0.3 m WT management plots than in the 0.6 m plot and the control. At the vegetative stage, chlorophyll content was significantly lower with higher WT control because of excess soil moisture, but it recovered after the flowering stage. Soybean yield increased with WT management and the 0.6 m WT treatment produced the greatest grain yield, $3.38ton\;ha^{-1}$, which was 50% greater than that of the control. The CDS directly influenced outflow through the drains, which significantly delayed nutrient loss. The results of this study indicated that WT management by CDS can influence soil characteristics and it is an important practice for high yielding soybean production in paddy fields, which should be considered the crop growth stages for stable crop production.

KISTI-ACOMS를 기반으로 한 한국작물학회 온라인 논문투고관리 시스템 (KSCS(Korean Academy of Crop Science) Online Article Contribution Management System based on KISTI-ACOMS)

  • 박재원;강무영
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2004년도 춘계 학술대회지
    • /
    • pp.42-50
    • /
    • 2004
  • Societies are important sources of new information for users. However, most of these societies still rely on traditional, or rather ancient methods for gathering and servicing the information. Furthermore, most of the societies are trying to electrify processes such as managing members and paper submission as well as the process managing the information for service but are limited due to financial and technical reasons. Therefore, KISTI(Korea Institute of Science and Technology Information) has developed the ${\ulcorner}$KISTl-ACOMS (KISTI-Article Contribution Management System)${\lrcorner}$ as part of the national project for automating the process of processing academic information by societies, in order to convert journals published by academic societies in Korea into an electronic form and make them accessible on the Internet. This system has been developed in the year 2001 and has since been distributed to societies free of charge. The number of societies requesting the service has risen recently, which prompted us to take more recommendations of the societies that adopt this system into account in expanding and standardizing the area of service being provided by the system.

  • PDF

Development and Evaluation of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production

  • Kikuhara, K.;Kumagai, H.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.57-71
    • /
    • 2009
  • Crop-livestock mixed farming systems depend on the efficiency with which nutrients are conserved and recycled. Home-grown forage is used as animal feed and animal excretions are applied to cultivated crop lands as manure. The objective of this study was to develop a mixed farming system model for dairy cattle in Japan. The model consisted of four sub-models: the nutrient requirement model, based on the Japanese Feeding Standards to determine requirements for energy, crude protein, dry matter intake, calcium, phosphorus and vitamin A; the optimum diet formulation model for determining the optimum diets that satisfy nutrient requirements at lowest cost, using linear programming; the herd dynamic model to calculate the numbers of cows in each reproductive cycle; and the whole farm optimization model to evaluate whole farm management from economic and environmental viewpoints and to optimize strategies for the target farm or system. To examine the model' validity, its predictions were compared against best practices for dairy farm management. Sensitivity analyses indicated that higher yielding cows lead to better economic results but higher emvironmental load in dairy cattle systems integrated with forage crop production.