• Title/Summary/Keyword: Crop evapotranspiration

Search Result 142, Processing Time 0.027 seconds

Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed (간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정)

  • Kim, Sinaee;Kim, Seokhyeon;Hwang, Soonho;Jun, Sang-Min;Song, Jung-Hun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

Study on The Water Requirements of Chinese Cabbage. (배추 용수량에 관한 연구)

  • 김현철;정두호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3430-3437
    • /
    • 1974
  • .It is very importaut to know the water consumption of crops in planning irrigation works and practicing suitable soil moisture management. For the purpose of making it clear that how much water be consumed to cultivate the Chinese cabbage, Chamber method has been applied. Main equipments in the transpiration chamber are flowers, manometer and electric thermograph. The chamber made of vynyl plate has a small entrance at the base and an exit at the top, and the ventilation in the chamber was carried out by a flower through the entrance and exit. Air-flow adjusted by an orifice manometer enters the chamber from the outside over the crop canopy through the pipe like a chimney and finally goes out to the outside. Two sets which consist of a pair of dry and wet bulb made by thermistor are installed in the entrance and exit tube, and record air temperature automatically. Evapotranspiration amount is computed from the air-flow quantity and difference in absolute humidity between at the entrance and exit of the chamber by the following equation: ET=(X2-X1)${\times}$Q where ET=evapotranspiration amount X1=absolute humidity at the entrance(g/㎥) X2=absolute humidity at the exit(g/㎥) Q=air-flow quantity(㎥) This study was carried out at the upland farm of the Institute of Agriculture Engimeering and Utilization, Suwon, Korea. from 1971 to 1973. The results obtained in this experiment are as follows: 1. The total amount of evapotranspiration of Chinese Cabbage that is cultivated in autumn is 408.1mm during growth period. 2. Chinese cabbage rapidly grows up in the second ten days of September, 40th to 50th days after seeding. At the same time, the maximum amount of evaportranspiration of Chinese cabbage is 61.6mm/10 days 3. The correlation between Pan-evaporation and evapotranspiration is high, coefficient of correlation r=0.88**, and can be shown as The following regression equation: ET=0.913E+20.273 4. Evapotranspiration is closely related with meteorological factors: r=0.85**, for insolation, r=0.76** for air temperature, respectively. 5. The percentage of evapotranspiration amount, at the beginning of growth stage, gradually increases in proportion as the Chinese Cabbage grows but is largely affected by meteorological factors after the green cover formation. 6. By Blaney and Griddle formula, evaportranspiration coefficient "K" are within from 0,85 to 1.27.

  • PDF

Estimation of Actual Evapotranspiration over Paddy Rice Field (수도 포장의 실증발산량 추정에 관한 연구)

  • 이변우;김병찬
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.6
    • /
    • pp.518-524
    • /
    • 1990
  • Actual evapotranspiration was measured over rice paddy field by Bowen ratio heat balance method and based on this, investigated was the reliability of actual evapotranpiration estimation from Class-A Pan and small pan evaporation and reference evapotranspiration calculated by modified Penman-Monteith model. Crop coefficients based on Class-A Pan and small pan evaporation and reference evapotranspiration by modified Penman-Monteith model were averaged to be 1.57. 1.10 and 1.49 over the whole rice growing season, respectively. Their respective coefficients of variation were 28.7. 22.7 and 12.8 percent, respectively. Crop coefficient based on modified Penman-Monteith model varied in good agreement with the trend of leaf area development, being greatest around heading stage.

  • PDF

Improvement of agricultural water demand estimation focusing on paddy water demand (논용수 수요량 산정을 중심으로 한 농업용수 수요량 산정방법의 개선)

  • Park, Chang Kun;Hwang, Junshik;Seo, Yongwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.939-949
    • /
    • 2020
  • Currently, the demand for farmland is steadily decreasing due to changes in the agricultural environment and dietary life. In line with this, the government adopted an integrated water management with the enactment of the Framework Act on Water Management on June 2019. Therefore, it is required to take a closer look at agricultural water demand that accounts for 61% of water use for efficient water resources management. In this study, the overal process was evaluated for estimating agricultural water demand. More specifically, agricultural water demand for paddy field, which comprises 67% to 87% of agricultural water demand, was reviewed in detail. The biggest issue in estimating the paddy field water demand is the selection of the method for potential evapotranspiration. FAO recommends Penman-Monteith, but, currently, our criteria suggest a modified Penman equation that shows over estimation. Also, the crop coefficient, which is the main factor in evaluating evapotranspiration, has an issue that does not consider the current climate and crop varieties because it was developed 23 years ago. Comparing the Modified Penman and Penman-Monteith equations using the data from Jeonju National Weather Service, the modified Penman equation showed a big difference compared to the Penman-Monteith equation. When the crop coefficient was applied, the difference between late May and late August increased, where the amount of evapotranspiration was high. The estimation process was applied to four study reservoirs in Gimje. Comparing the estimated water demand with the supplied water record from reservoirs, the results showed that the estimation accuracy depends on not just the potential evapotranspiration, but also the standard water storing level in paddy fields.

Response of Rice Growth under $CO_2$ Enrichment ($CO_2$ 농도 증가에 따른 벼의 생육 반응)

  • Kim Young-Guk;Shin Jin-Chul;Choi Min-Gyu;Koo Bon-Cheul;Kim Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • The effects of $CO_2$ enrichment on growth of rice (Oryza sativa L.) were examined. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ of the seedling stage and $30/23^{\circ}C$ after the panicle initiation stage. The plants were exposed to two elevated $CO_2$ of 500, 700 ppm and ambient levels (350 ppm). At early growth stage of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo), the elevated $CO_2$ increased plant height, tiller, leaf area and dry weight. The photosynthetic rate was decreased at 24 days after treatment (DAT) compared to 11 DAT. The elevated $CO_2$ increased plant height and dry weight at panicle initiation stage (PIS) and heading stage (HS) of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo). The photosynthetic rate, stomatal conductance, evapotranspiration rate were decreased at the long days of treatment than that of short days. At entire stages, the elevated $CO_2$ increased the water use efficiency of rice plant because evapotranspiration rate was lowered at the elevated $CO_2$ than ambient levels.

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Comparison of Crop Growth and Evapotranspiration Simulations between Noah Multi Physics Model and CERES-Rice Model (Noah Multi Physics 모델과 CERES-Rice 모델의 작물 생육 및 증발산 모의 비교)

  • Kim, Kwangsoo;kang, Minseok;Jeong, Haneul;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.282-290
    • /
    • 2013
  • Biophysical and biochemical processes through which crops interact with the atmosphere have been simulated using land surface models and crop growth models. The Noah Multi Physics (MP) model and the CERES-Rice model, which are a land surface model, and a crop growth model, respectively, were used to simulate and compare rice growth and evapotranspiration (ET) in the areas near Haenam flux tower in Korea. Simulations using these models were performed from 2003 to 2012 during which flux measurements were obtained at the Haenam site. The Noah MP model failed to simulate the pattern of temporal change in leaf area index (LAI) after heading. The simulated aboveground biomass with the Noah MP model was underestimated by about 10% of the actual biomass. The ET simulated with the Noah MP model was as low as 21% of those with the CERES-Rice model. In comparison with actual ET measured at Haenam flux site, the root mean square error (RMSE) of the Noah MP model was 1.8 times larger than that of the CERES-Rice model. The Noah MP model seems to show less reliable simulation of crop growth and ET due to simplified phenology processes and assimilates partitioning compared with the CERES-Rice model. When ET was adjusted by the ratio between leaf biomass simulated using CERES-Rice model and Noah MP model, however, the RMSE of ET was reduced by 30%. This suggests that an improvement of the Noah MP model in representing rice growth in paddy fields would allow more reliable simulation of matter and energy fluxes.

The Measuring Experiment of Irrigation Water for Spreading Varieties of Rice Plant in Chuncheon Area (춘천지역의 장려수도품종의 용수량 측정시험)

  • 고희완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.93-105
    • /
    • 1987
  • This Study was carried out at the experimental Plot of Kang-Weon Province, Institute of Agriculture experiment, to find out Irrigation Water requirement and suitable calculating formula of evapotranspiration on Spreading Varieties of rice plant such as Seul Oak, Bokkwang and Teaback in Chuncheon Area. The evapotranspiration, infiltration, and consumptive use of water were measured by Micro Lysimeter for four years from '86yr. Also, yield of rice was investigated during same period. With the Kc Value taken from experimental value, evapotranspiration was calculated by methods of Blaney & criddle, Penman, Hargreaves and Thornthwaite by Computer using meteorological data in Chuncheon Area for twenty one yrs from '66yr to '86yr. All analyses were conducted based on average value of experiment for four years and the results are summarized as follows : 1) The yield by varieties through this experiment showed 1.06 times in Seul Oak, 1.94 times in Bokkwang and 1.89 times in Teaback more than Standard Yield. 2) The consumptive use of water including infiltration were 1.068.4mm in Seul Oak, 1,102. 6mm in Bokkwang and 1,195.6mm in Teaback 3) The evapotranspiration by Actual measurement presented 520.lmm in Seul Oak, 540.lmm in Bokkwang and 598.4mm in Teaback 4)The ratio of evapotranspiration and infiltration over Panevaporation showed 1.2 to 1.4. 5) The irrigation water reguirement by water balance were shown to be irrigated more than 584 mm / yr in average during 21 years from '66yr to '86yr for all Varieties and those for loyr frequency 693 mm in Seul Oak, 712 mm in Bokkwang and 728 mm in Teaback respectively. 6) Crop Coefficient (Ke Value) of the tested rice plant during the period were shown as Table 10. 7) Penman Method was the formula the most close to experiment Value among four different methods of Blaney & Griddle Penman, Hargreaves, and Thornthwaite.

  • PDF

Comparison of reference evapotranspiration estimation methods with limited data in South Korea

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seonah;Ok, Junghun;Cho, Heerae;Han, Kyung-Hwa;Jung, Kang-Ho;Zhang, Yong-Seon;Hong, Suk-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.137-149
    • /
    • 2019
  • Accurate estimation of reference evapotranspiration (RET) is important to quantify crop evapotranspiration for sustainable water resource management in hydrological, agricultural, and environmental fields. It is estimated by different methods from direct measurements with lysimeters, or by many empirical equations suggested by numerous modeling using local climatic variables. The potential to use some such equations depends on the availability of the necessary meteorological parameters for calculating the RET in specific climatic conditions. The objective of this study was to determine the proper RET equations using limited climatic data and to analyze the temporal and spatial trends of the RET in South Korea. We evaluated the FAO-56 Penman-Monteith equation (FAO-56 PM) by comparing several simple RET equations and observed small fan evaporation. In this study, the modified Penman equation, Hargreaves equation, and FAO Penman-Monteith equation with missing solar radiation (PM-Rs) data were tested to estimate the RET. Nine weather stations were considered with limited climatic data across South Korea from 1973 - 2017, and the RET equations were calculated for each weather station as well as the analysis of the mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). The FAO-56 PM recommended by the Food Agriculture Organization (FAO) showed good performance even though missing solar radiation, relative humidity, and wind speed data and could still be adapted to the limited data conditions. As a result, the RET was increased, and the evapotranspiration rate was increased more in coastal areas than inland.