• 제목/요약/키워드: Crop classification

검색결과 262건 처리시간 0.02초

Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법 (A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification)

  • ;나형철;류관희
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Classification of Crop Lands over Northern Mongolia Using Multi-Temporal Landsat TM Data

  • Ganbaatar, Gerelmaa;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제29권6호
    • /
    • pp.611-619
    • /
    • 2013
  • Although the need of crop production has increased in Mongolia, crop cultivation is very limited because of the harsh climatic and topographic conditions. Crop lands are sparsely distributed with relatively small sizes and, therefore, it is difficult to survey the exact area of crop lands. The study aimed to find an easy and effective way of accurate classification to map crop lands in Mongolia using satellite images. To classify the crop lands over the study area in northern Mongolia, four classifications were carried out by using 1) Thematic Mapper (TM) image August 23, 2) TM image of July 6, 3) combined 12 bands of TM images of July and August, and 4) both TM images of July and August by layered classification. Wheat and potato are the major crop types and they show relatively high variation in crop conditions between July and August. On the other hands, other land cover types (forest, riparian vegetation, grassland, water and bare soil) do not show such difference between July and August. The results of four classifications clearly show that the use of multi-temporal images is essential to accurately classify the crop lands. The layered classification method, in which each class is separated by a subset of TM images, shows the highest classification accuracy (93.7%) of the crop lands. The classification accuracies are lower when we use only a single TM image of either July or August. Because of the different planting practice of potato and the growth condition of wheat, the spectral characteristics of potato and wheat cannot be fully separated from other cover types with TM image of either July or August. Further refinements on the spatial characteristics of existing crop lands may enhance the crop mapping method in Mongolia.

계층분류 기법을 이용한 위성영상 기반의 동계작물 구분도 작성 (Satellite Imagery based Winter Crop Classification Mapping using Hierarchica Classification)

  • 나상일;박찬원;소규호;박재문;이경도
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.677-687
    • /
    • 2017
  • 본 연구에서는 위성영상 기반의 동계작물 구분도 작성을 위한 계층분류 기법을 제안한다. 계층분류 기법은 입력 자료를 계층별로 정의하여 분류하는 방법으로 혼합 픽셀의 효과를 줄이고 분류 성능을 향상시킬 수 있다. 이를 위하여 전북 김제시의 동계작물을 대상으로 Landsat-8 위성영상을 사용하였다. 먼저, Landsat-8 위성영상에서 스마트 팜 맵을 이용하여 농경지를 분류하였다. 그리고 추출된 농경지를 대상으로 시계열 식생지수를 사용하여 동계작물 재배지를 추출한 후, 최종적으로 무인기 영상에서 추출한 훈련자료를 활용하여 밀, 보리, IRG, 청보리 및 혼파 재배지로 분류하였다. 그 결과, 계층분류 기법에 의한 동계작물 분류 정확도는 98.99%로 동계작물별 재배 필지를 효과적으로 분류할 수 있는 것으로 나타났다. 따라서 제안된 분류방법은 작물구분도 작성에 효과적으로 사용 가능할 것으로 기대된다.

The Efficiency of Long Short-Term Memory (LSTM) in Phenology-Based Crop Classification

  • Ehsan Rahimi;Chuleui Jung
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.57-69
    • /
    • 2024
  • Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.

시계열 식생지수와 과거 작물 재배 패턴을 이용한 대규모 작물 분류도의 조기 제작 - 미국 아이오와 주 사례연구 - (Early Production of Large-area Crop Classification Map using Time-series Vegetation Index and Past Crop Cultivation Patterns - A Case Study in Iowa State, USA -)

  • 김예슬;박노욱;홍석영;이경도;유희영
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.493-503
    • /
    • 2014
  • 이 논문에서는 대규모 작물 재배 지역의 작물 분류도의 조기 제작을 목적으로 분광학적 혼재를 줄이고, 과거 토지피복도의 작물 재배 패턴을 반영할 수 있는 계층적 분류 방법론을 제안하였다. 특히 작물 생육 주기로부터 다른 분광 특성을 고려한 계층적 분류 접근을 적용하고, 과거 작물 재배 패턴으로부터 추출된 시간적 문맥 정보를 함께 고려함으로써 분광 혼재가 두드러진 화소의 영향을 줄일 수 있다. 제안 분류 기법의 적용성을 평가하기 위해 미국 아이오와 주 전체를 대상으로 시계열 MODIS 250 m 정규식생지수 자료와 과거 crop data layer를 사용하는 사례 연구를 수행하였다. 사례 연구를 통해 다른 분류 단계와 과거 작물 재배 패턴을 고려함으로써 대상 지역의 주요 재배 작물이면서 분광학적 유사도가 두드러진 콩과 옥수수를 효과적으로 구분할 수 있었다. 그리고 분광 정보만을 이용한 분류 결과에 비해 제안 기법이 최소 7.68%p에서 최대 20.96%p의 향상된 분류 정확도를 보였다. 또한 분류 단계에서 시간적 문맥 정보를 결합함으로써 사용 NDVI 자료의 수에 영향을 덜 받는 가장 높은 분류 정확도(최대 전체 정확도: 86.63%)를 얻을 수 있었다. 따라서 제안 분류 기법은 주요 곡물 수입국의 대규모 작물 구분도의 조기 제작에 유용하게 사용될 수 있을 것으로 기대된다.

Estimation of Heading Date of Paddy Rice from Slanted View Images Using Deep Learning Classification Model

  • Hyeokjin Bak;Hoyoung Ban;SeongryulChang;Dongwon Gwon;Jae-Kyeong Baek;Jeong-Il Cho;Wan-Gyu Sang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.80-80
    • /
    • 2022
  • Estimation of heading date of paddy rice is laborious and time consuming. Therefore, automatic estimation of heading date of paddy rice is highly essential. In this experiment, deep learning classification models were used to classify two difference categories of rice (vegetative and reproductive stage) based on the panicle initiation of paddy field. Specifically, the dataset includes 444 slanted view images belonging to two categories and was then expanded to include 1,497 images via IMGAUG data augmentation technique. We adopt two transfer learning strategies: (First, used transferring model weights already trained on ImageNet to six classification network models: VGGNet, ResNet, DenseNet, InceptionV3, Xception and MobileNet, Second, fine-tuned some layers of the network according to our dataset). After training the CNN model, we used several evaluation metrics commonly used for classification tasks, including Accuracy, Precision, Recall, and F1-score. In addition, GradCAM was used to generate visual explanations for each image patch. Experimental results showed that the InceptionV3 is the best performing model in terms of the accuracy, average recall, precision, and F1-score. The fine-tuned InceptionV3 model achieved an overall classification accuracy of 0.95 with a high F1-score of 0.95. Our CNN model also represented the change of rice heading date under different date of transplanting. This study demonstrated that image based deep learning model can reliably be used as an automatic monitoring system to detect the heading date of rice crops using CCTV camera.

  • PDF

작물 생산률 향상을 위한 생장 환경 변화 탐지 CCMS(Crop Classification Management System) (CCMS (Crop Classification Management System) Detecting Growth Environment Changes to Improve Crop Production Rate)

  • 최호길;이병관;손수락;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.145-152
    • /
    • 2020
  • 본 논문에서는 작물의 생산 비율 향상을 위하여 생장 환경 변화를 탐지하는 CCMS(Crop Classification Management System)를 제안한다. CCMS는 첫째, CNN을 이용하여 이미지를 통해 작물의 종류를 구분하는 Crop Classification Module(CCM)과 둘째, 농장의 누적 데이터를 비교하여 농작물의 이상을 탐지하는 FADM(Farm Anomaly Detection Module)로 구성된다. CCMS의 CCM은 잎 이미지를 통하여 현재 농장에서 재배되는 작물을 인식하고 FADM에 전송하고, FADM은 해당 작물을 재배하는 농장의 과거부터 현재까지 기상데이터를 선택하여 그것을 넬슨 규칙에 적용한다. FADM은 넬슨 규칙을 통하여 이상이 발생한 기상데이터를 찾아내고, IoT 디바이스를 통하여 농장의 환경을 조절한다. CCMS의 성능분석 결과 CCMS의 CCM은 약 90%의 작물 분류 정확도를 갖고, FADM은 예측 수확량을 최대 약 30%가량 향상시키는 것으로 나타났다. 즉, CCMS를 통해 농장을 관리하는 것이 스마트 팜의 수확량 증가에 도움을 줄 수 있다.

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

Potential of Bidirectional Long Short-Term Memory Networks for Crop Classification with Multitemporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, Chan-Won;Ahn, Ho-Yong;Na, Sang-Il;Lee, Kyung-Do;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.515-525
    • /
    • 2020
  • This study investigates the potential of bidirectional long short-term memory (Bi-LSTM) for efficient modeling of temporal information in crop classification using multitemporal remote sensing images. Unlike unidirectional LSTM models that consider only either forward or backward states, Bi-LSTM could account for temporal dependency of time-series images in both forward and backward directions. This property of Bi-LSTM can be effectively applied to crop classification when it is difficult to obtain full time-series images covering the entire growth cycle of crops. The classification performance of the Bi-LSTM is compared with that of two unidirectional LSTM architectures (forward and backward) with respect to different input image combinations via a case study of crop classification in Anbadegi, Korea. When full time-series images were used as inputs for classification, the Bi-LSTM outperformed the other unidirectional LSTM architectures; however, the difference in classification accuracy from unidirectional LSTM was not substantial. On the contrary, when using multitemporal images that did not include useful information for the discrimination of crops, the Bi-LSTM could compensate for the information deficiency by including temporal information from both forward and backward states, thereby achieving the best classification accuracy, compared with the unidirectional LSTM. These case study results indicate the efficiency of the Bi-LSTM for crop classification, particularly when limited input images are available.