• Title/Summary/Keyword: Crop analysis

Search Result 3,071, Processing Time 0.028 seconds

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

Effect of Monoculture and Mixtures on Dry Matter Yield and Feed Value of Italian Ryegrass (Lolium Multiflorum Lam.) (이탈리안 라이그라스의 단파 및 혼파 재배가 건물수량 및 사료가치에 미치는 영향)

  • Jeong Sung Jung;Bo Ram Choi;Ouk Kyu Han;Bae Hun Lee;Ki Choon Choi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • This study was conducted to analyze and compare the dry matter yield of Italian ryegrass (IRG) cultivated under monoculture and mixed culture system to recommend suitable varieties that can be cultivated. Italian ryegrass cultivars, Green Fram (GF, extremely early-maturing), Kowinearly (KE, early-maturing), Kowinmaster (KM, mild-maturing), and Hwasan 104 (H104, late-maturing), were used for mono or mixed cultivation. The average monthly temperature in Cheonan over the past 30 years tended to be similar, but that in November and March are judged to be abnormal weather. The dry matter yield of GF+H104 was significantly higher during harvest than that of GF (p<0.05). The dry matter yields of KE and KE+KM were significantly higher during harvest than the output standards of KE and KM. There was no significant difference between the dry matter yield of H104 and KM (p>0.05), but KM had the highest yield of 16,763.1 kg/ha. Analysis showed that the highest dry matter yield during IRG harvest was obtained under monoculture and KE+KM mixed culture. Because the occurrence frequency of abnormal weather such as drought during spring is increasing recently, it is judged that IRG cultivation using early and middle growth is necessary to prepare for abnormal weather.

Status and Development Strategy of the Seed Industry in China (최근 중국 종자산업의 현황 및 발전 전망)

  • Lee, Jung-Ro;Baek, Hyung-Jin;Choi, Yu-Mi;Lee, Sok-Young;Lee, Gi-An;Jung, Yeon-Ju;Kim, Chung-Kon;Lee, Myung-Chul
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.552-559
    • /
    • 2011
  • China is a one of the largest agricultural countries in the world. China consumes around 12.5 billion kilograms of seeds each year. Suchhuge demand for seeds has made the Chinese seed market more and more attractive for investment. Through analysis on the present situation and existing problems of the seed industry in China and based on the current Chinese seed industry development, some future prospects for investments are indicated. This investigation was carried out to propose the appropriate strategies on the development of the Korea seed industry as it considers its entry into the China seed market as a new growth engine in the agricultural sector. The basic law regulating the Chinese seed industry is the PRC Seed Law that generally refers to the protection of germplasm resources, verification of varieties, seed quality issues, the import and export of seeds, seed administrative management, and various rights and obligations. The regulations were aimed at the protection of the rights concerning new varieties of plants. China has two main industry associations, the National Seed Association and the China Seed Industry IP Union, that are non-profit associations consisting of entities and people engaging in the seed scientific research, production, operation and management. The China National Seed Group Co., Ltd. ("Sino Seeds") is the market leader in China regarding the seed industry. The chinese government, however, encourages investment from multinational companies as well as importation of modern crop planting management technologies and equipment. It supports the entry of investors with proven experiences in breeding and germplasm resources expansion and R&D. There has never been a better time for multinational companies with proven seed industry experience to look at building relationships with the Chinese government and enterprises.

A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy (신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구)

  • HanByeol Oh;KyeongMin Jang;JeeYoung Oh;MyeongBae Lee;JangWoo Park;YongYun Cho;ChangSun Shin
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2023
  • Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.

Generation of Time-Series Data for Multisource Satellite Imagery through Automated Satellite Image Collection (자동 위성영상 수집을 통한 다종 위성영상의 시계열 데이터 생성)

  • Yunji Nam;Sungwoo Jung;Taejung Kim;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1085-1095
    • /
    • 2023
  • Time-series data generated from satellite data are crucial resources for change detection and monitoring across various fields. Existing research in time-series data generation primarily relies on single-image analysis to maintain data uniformity, with ongoing efforts to enhance spatial and temporal resolutions by utilizing diverse image sources. Despite the emphasized significance of time-series data, there is a notable absence of automated data collection and preprocessing for research purposes. In this paper, to address this limitation, we propose a system that automates the collection of satellite information in user-specified areas to generate time-series data. This research aims to collect data from various satellite sources in a specific region and convert them into time-series data, developing an automatic satellite image collection system for this purpose. By utilizing this system, users can collect and extract data for their specific regions of interest, making the data immediately usable. Experimental results have shown the feasibility of automatically acquiring freely available Landsat and Sentinel images from the web and incorporating manually inputted high-resolution satellite images. Comparisons between automatically collected and edited images based on high-resolution satellite data demonstrated minimal discrepancies, with no significant errors in the generated output.

Current Status and Perspective of Smart Vegetable Seedling Production Technology in the Republic of Korea (국내 스마트 채소 육묘 기술 개발 현황 및 전망)

  • Dong Hyeon Kang;So Young Lee;Hey Kyung Kim;Sewoong An
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2024
  • In this study, we summarized the definition of smart vegetable seedling production technology, analysis of smart seedling production system, a hardware and software configuration model for smart seedling production system, research and development trends in smart seedling production system, and proposed future research and development plans for smart seedling production technology. Smart vegetable seedling production is a data-based seedling production, management, and distribution system that utilizes 4th Industrial Revolution technology to improve seedling productivity and quality. The production of vegetable seedlings using smart seedling production technology can be efficiently managed by collecting, analyzing, and managing information on seedlings, environment, and tasks at each stage of production by linking with the smart seedling integrated management system. However, there is still a lack of standardization of seedling standards and quality for each vegetable crop to establish smart seeding production technology, as well as development of smart seedling production element technology, which requires national wide R&D support.

Economic Effects Analysis of Self-Produced Forages for Dairy Cows and Hanwoo (자가 생산 풀사료 사양의 경제적 효과분석)

  • In Ho Choi;Jae Seong Choi;Ji Yung Kim;Kyung Il Sung;Byong Wan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • This study divided the area capable of producing domestic forage into grazing pasture, hay production area, and silage crop area, calculated the required area according to the forage production volume, and examined whether self-sufficiency in forage leads to cost savings. When the self-sufficiency rate of forage for dairy cows and Hanwoo is 80%, the improvement in profitability per heaf ranges from 3% to 9%, typically around 5%, which is considered a significant benefit for both corporate and individual businesses. The average profit per ranch is expected to increase about KRW 50 million per year, and the country as a whole is expected to reduce forage costs by KRW 0.9 trillion per year. Recently, efforts are being made by the government and local authorities to cultivate summer forage at the rice fields for improving self-sufficiency in forage feed to stabilize rice supply and demand. Furthermore, it is also necessary to conduct research on reducing the cost of concentrated feed and TMR (Total mixed ration).

Comparison of Basal Physicochemical Changes of Reused Rockwool Substrate in Hydroponic Tomato Cultivation (수경재배 토마토 재사용 암면 배지의 기초 물리화학성 변화 비교)

  • Jae Seong Lee;Jong Hwa Shin
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.114-119
    • /
    • 2024
  • Rockwool substrate has superior physicochemical characteristics and is often used in crop cultivation. However, rockwool substrate has the disadvantages of high purchase cost and difficulty in disposal. Reuse of substrate can compensate for these disadvantages. Substrate must be disinfected and rehydrated during reuse, and various physicochemical changes during this process must also be considered. This study was to compare the physical properties of two types of rockwool substrates (reused and unused) and to evaluate the reuse potential of rockwool substrate by analyzing the chemical properties of the reused rockwool substrate during the rehydration process. The experiment on substrate physicochemical properties comparison was conducted from March to August 2023 using used rockwool substrates in tomato cultivation and unused rockwool substrates. Drainage time, drainage volume, and substrate weight were measured using load cells installed at the top and bottom of the irrigation monitoring system. The reused rockwool substrate weight and density were higher than those of the unused rockwool substrate, while the average drainage time after irrigation was 1.5 times longer for the reused rockwool than for the unused rockwool. The salinity concentration in different parts of the reused rockwool substrate was found to be lower in the reused rockwool substrate compared to the unused rockwool substrate. The electrical conductivity of the drainage was at its peak at the beginning of the drainage and decreased exponentially as the drainage volume increased. Change in electrical conductivity of the drainage over the irrigation time showed an exponential decay pattern. Through the experiments, the potential reusability of the rock wool substrate was assessed by conducting a comparative analysis of its physicochemical properties.

Analysis of Systemic Pesticide Imidacloprid and Its Metabolites in Pepper using QuEChERS and LC-MS/MS (QuEChERS 전처리와 LC-MS/MS를 이용한 고추 중 침투성농약 Imidacloprid 및 대사물질 동시분석법)

  • Seo, Eun-Kyung;Kim, Taek-Kyum;Hong, Su-Myeong;Kwon, Hye-Yong;Kwon, Ji-Hyung;Son, Kyung-Ae;Kim, Jang-Eok;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.264-270
    • /
    • 2013
  • Imidacloprid is a systemic insecticide which act as an insect neurotoxin. It used for control of pest such as aphids and other sucking insects in fruits and vegetables. Systemic pesticides move inside a crop following absorption by the plant, and these were converted into a variety of metabolites. Sometimes these metabolites make a problem about safety of agricultural products. So a simultaneous determination method of pesticide and its metabolites is needed, to monitor their presence in agricultural product and study on the fate of pesticide in a plant. This study's aim is to investigate simultaneous analysis method of imidacloprid and its metabolites, imidacloprid guanidine, imidacloprid olefin, imidacloprid urea, and 6-chloronicotinic acid in red pepper using QuEChERS method and LC-MS/MS systems. QuEChERS method was modifed beacuase $MgSO_4$ salts decreased the recoveries of 6-chloronicotinic acid in extraction procedure. Imidacloprid and its metabolites were extracted by acetonitrile with 1% glacial acetic acid and the extracts were purified through QuEChERS with primary secondary amine (PSA) and $C_{18}$ and analyzed with LC-MS/MS in ESI positive mode. Standard calibration curves were made by matrix matched standards and their correlation coefficients were higher than 0.999. Recovery studies were carried out on spiked pepper blank sample at four concentration levels (0.01, 0.04 and 0.1, 0.4 mg/kg). The average recoveries of imidacloprid and its metabolites were in the range of 70~120% with < 20% RSD. This result indicated that the method using QuEChERS and LC-MS/MS was suitable for the simultaneous determination of imidacloprid and its metabolites in red pepper.

Toxic Impact Analysis by Exposure Duration of Dog Studies for Pesticides using in Korea (국내 사용농약의 노출 기간이 개의 독성반응에 미치는 영향 분석)

  • Lee, Je Bong;Jeong, Mi-Hye;You, Are-Sun;Hong, Soonsung;Paik, Min-Kyoung;Oh, Jin-Ah;Park, Kyung Hun;Ihm, Yang Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.350-358
    • /
    • 2013
  • Both 13-week and 1-year studies in dog were required for pesticide registration in domestic pesticide control authority. It is raising issue up whether to request 1-year dog study of pesticides using non-food crop. So at this investigation, relevant toxicity test to establish acceptable daily intake (ADI), target organs, difference of no-observed adverse-effect levels (NOAELs) in 13-week and 1-year of 166 active ingredients are analyzed. The data were evaluated to determine if the 13-week dog study and the long term studies in two rodent species (mice and rats) without 1-year dog study were sufficient for the identification of NOAELs and lowest observed adverse effect levels (LOAELs) for the derivation of ADI. Toxicity end points and dose response data from 13 week and 1-year studies were compared. The analysis showed that 68 ADIs of the 166 pesticides were established from dog studies. Major target organs of dog studies were liver in 49 cases, body weight change in 21 cases, cholinesterase inhibition in 16 cases, and alteration in hematology in 14 cases. Similarity of target organ in 13-week and 1-year was 73%. 22 of 40 pesticides had similar critical effects regardless of duration and had NOAELs within a difference of 1.5-fold of each other. For the remaining 18 pesticides, 14 items had lower NOAELs in the 1-year study than 13-week study primarily due to dose selection and spacing. In only 10% of the cases were additional toxic effects identified in the 1-year study that were not observed in the 13-week study.