• Title/Summary/Keyword: Crop analysis

Search Result 3,052, Processing Time 0.04 seconds

Interpretation of Agronomic Traits Variation of Sesame Cultivar Using Principal Component Analysis

  • Shim, Kang-Bo;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Jang-Whan;Byun, Jae-Cheon;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • This study was conducted to evaluate the growth characters and yield components of 18 collected sesame cultivars to get basic information on the variation for the sesame breeding using principal component analysis. All characters except days to flowering, days to maturity and 1,000 seed weight showed significantly different. Seed weight per 10 are showed higher coefficient of variance. Capsule bearing stem length and liter weight showed positive correlation with seed yield per 10 are. The principal components analysis grouped the estimated sesame cultivars into four main components which accounted for 83.7% of the total variation at the eigenvalue and its contribution to total variation obtained from principal component analysis. The first principal component ($Z_1$) was applicable to increase plant height, capsule bearing stem length and 1,000-seed weight. The second principal component ($Z_2$) negatively correlated with days to flowering and maturity by which it was applicable to shorten flowering and maturity date of sesame. At the scatter diagram, Yangbaek, Ansan, M1, M2, M4, M7 and M9 were classified as same group, but M10, Yanghuk, Kanghuk, M5, M6, M12 and M13 were classified as different group. This results would be helpful for sesame breeder to understand genetic relationship of some agronomic characters and select promising cross lines for the development of new sesame variety.

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF