• Title/Summary/Keyword: Crop Information System

Search Result 303, Processing Time 0.028 seconds

Wilted Symptom in Watermelon Plant under Ventilation Systems (환기처리에 의한 수박의 시듦증 발생 기작)

  • Cho, Ill-Hwan;Ann, Joong-Hoon;Lee, Woo-Moon;Moon, Ji-Hye;Lee, Joo-Hyun;Choi, Byung-Soon;Son, Seon-Hye;Choi, Eun-Young;Lee, Sang-Gyu;Woo, Young-Hoe
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.529-534
    • /
    • 2010
  • Occurrence of wilted symptom in watermelon plant ($Citrullus$ $lanatus$ L.) is known to be caused by physiological disorder. The symptom results in the loss of fruit production and thus the economical loss of watermelon growers. The incidence of symptom is often found from the middle of March to the end of May in the major watermelon crop production areas of Korea (i.e. Uiryeong, Gyeongnam (lat $37^{\circ}$56'64"N, long $126^{\circ}$99'97"E)). Despite of extensive information about the physiological disorder, little study has been conducted to understand a relationship between the wilted symptom and accompanying environment factors (e.g. temperature). This study aimed to investigate effects of environmental conditions amended by a forced-ventilation system on physiological characteristics of watermelon and incidence of the wilted symptom. Watermelon plants were grown from January to May, 2009 with either the forced-or natural-ventilation treatment in a greenhouse located in the Uiryeong. In the result, the forced-ventilation treatment decreased the air, leaf and root-zone temperature approximately $4.5^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively, compared to the natural-ventilation. The fruit growth rate was maximized twice during the entire growing period. The higher rate of fruit growth was observed under the natural-ventilation than the forced one. Maximization of the fruit growth rate (approximately 430 g per day) was first observed by 12 days after fruiting under the natural-ventilation treatment, while the second one (approximately 350 g per day) was observed by 24 days after fruiting. The wilted symptom started occurring by 22 days after fruiting under the natural-ventilation, whereas no incidence of the symptom was found under the forced-ventilation treatment. Interestingly, the forced-ventilation lowered the fruit growth rate (approximately 320 g per day) compared to the natural one. Maximization of the fruit growth rate under the forced-ventilation was found at 4 days later than that under the natural one. This result coincided with a slower plant growth under the forced-ventilation treatment. These results suggest that the forced-ventilation slows down extension growth of fruit and plant, which may be associated with lowering leaf temperature and saturation deficit. We suggest the hypothesis that the forced-ventilation may alleviate stress of the wilted symptom by avoiding extreme water evaporation from leaves due to high temperature and thus by reducing competition between leaves and fruits for water. More direct and detailed investigations are needed to confirm the effect of the forced ventilation.

Current Research Trend of Postharvest Technology for Chrysanthemum (국화 수확 후 관리기술의 최근 연구 동향)

  • Kim, Su-Jeong;Lee, Seung-Koo;Kim, Ki-Sun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.156-168
    • /
    • 2012
  • Chrysanthemum is a cut flower species that normally lasts for 1 to 2 weeks, in some cases 3-4 weeks. This has been attributed to low ethylene production during senescence. Reduction in cut flower quality has been attributed to the formation of air embolisms that partially or completely blocks the water transport from the vase solution to the rest of the cut flower stem, increasing hydraulic resistance which may cause severe water stress, yellowing, wilting of leaf, and chlorophyll degradation. Standard type chrysanthemum can be harvested when buds were still tightly closed and then fully opened with the simple bud-opening solution. Standard type chrysanthemum can also be harvested when the minimum size of the inflorescence is about 5-6 cm bud which opened into the first flower full-sized flower. While spray varieties can be harvested when 2-4 most mature flowers have opened (40% opening). Cut flowers are sorted by stem length, weight, condition, and so on. Standard chrysanthemum is 80 cm length for standard type and 70cm for spray type. Pre-treatment with a STS, plant regulator such as GA, BA, 1-MCP, chrysal, germicide, and sucrose, significantly improved the vase life and quality of cut flowers. It is well established that vase solutions containing sugar can improve the vase life of cut chrysanthemum. Chrysanthemum is normally packed in standard horizontal fiberboard boxes. Chrysanthemum should normally be stored at $5{\sim}7^{\circ}C$. Precooling resulted in reduction in respiration, decomposition, and transpiration activities as well as decoloration retardation. There was significant difference between "wet" storage in 3 weeks and "dry" storage in 2 weeks. In separate pulsing solution trials, various germicides were tested, as well as PGRs to maintain the green color of leaves and turgidity. Prolonging vase life was attained with the application of optimal solution such as HQS, $AgNO_3$, GA, BA and sucrose. This also retarded senescence in leaves of cut flower stems. Fresh cut chrysanthemum can be transported using a refrigerated van with $5{\sim}7^{\circ}C$. Increasing consumption and usage of cut chrysanthemum of various cultivars would require efficient transport system, and effective information exchange among producer, wholesaler, and consumer.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.