• 제목/요약/키워드: Critical strain

검색결과 835건 처리시간 0.024초

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

The Effect of Deformation Stress-strain and Temperature on the $I_c$ Degradation of Bi-2223/Ag Tapes

  • Ha, Hong-Soo;Kim, Sang-Cheol;Ha, Dong-Woo;Oh, Sang-Soo;Joo, Jin-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1251-1252
    • /
    • 2006
  • In order to investigate 95% retained critical current of Bi-2223/Ag tapes under various stress-strain conditions, load cell attached tension and bending apparatus was used. The critical current of stress-strained tape was degraded below 95% retained critical current when tension and bending was simultaneously applied together. But only one of this tension or bending did not degrade the tape below 95% retained critical current. Deformation temperature was important to maintain the 95% retained Ic of Bi-2223/Ag tapes after bending or tension deformation because mechanical strength of tapes can be changed drastically between room temperature and 77 K.

  • PDF

성형하중예측을 위한 재결저분율 보상의 최적조건 도출 (A Study on the Optimal Stress Compensation to Dynamic Recrrystallization for the Estimation of Forming Loads)

  • 장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.131.1-134
    • /
    • 1999
  • The effect of dynamic recrystallization during hot forming process was implemented to a commercial FEM code by conditioned remeshing and remapping of sate variables. A datum strain for stress compensation was determined as a strain for maximum softening rate and was able to be formulated as a function of critical strain f($\varepsilon$). The validity of remapping criterion was examined by a series of mechanical tests and microstructural observation. The application of suggested datum resulted in better estimation of load-stroke during forging processes.

  • PDF

SCM 440 강재의 동적 재결정 조직 변화에 관한 연구 (The Evolution of Dynamically Recrystallized Microstructure for SCM 440)

  • 한형기;유연철
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF

Mechanical and electro-mechanical analysis in differently stabilized GdBCO coated conductor tapes with stainless steel substrate

  • Nisay, Arman R.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.29-33
    • /
    • 2013
  • The understanding of the strain dependence of critical current, $I_c$, in the reversible region is important for the evaluation of the performance of coated conductor (CC) tapes in practical applications. In this study, the stress/strain tolerance of $I_c$ in GdBCO CC tapes with stainless steel substrate stabilized by additional Cu and brass laminate was analyzed quantitatively through $I_c$-strain measurement at 77 K under self-field. The variation in irreversible strain limits of CC tapes by the addition of stabilizing layers was analyzed through the consideration of the pre-strain induced on the GdBCO coating film. The results were then compared with the ones previously reported for GdBCO CC tapes with Hastelloy substrate. As a result, GdBCO CC tapes with stainless steel substrate showed much higher strain tolerance of $I_c$ as compared with those adopting Hastelloy substrate.

암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구 (A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability)

  • 이강현;김도훈;박정준;이인모
    • 한국터널지하공간학회 논문집
    • /
    • 제13권6호
    • /
    • pp.501-517
    • /
    • 2011
  • 일반적으로 터널 시공현장에서는 계측된 천단 및 내공변위와 계측관리기준을 비교하여 터널의 안정성을 판단한다. 현재 계측관리기준은 지반조건, 터널단면의 크기, 시공방법, 지보재량 등을 고려한 경험을 통해 세워지고 있는 실정이다. 따라서 새로운 계측관리기준으로 한계변형률을 이용하는 방법에 대한 연구가 다수 수행되었다. 그러나 대부분의 연구는 일축압축강도실험에서 얻어진 한계변형률을 기준으로 삼고 있어 실제 터널 굴착 시 발생하는 응력의 증가 및 종방향 아칭에 의한 암반 손상을 고려하지 않는 문제점을 가지고 있다. 따라서 본 연구에서는 국내 대표 암종인 화강암과 편마암의 한계변형률 특성을 조사하기 위하여 일축압축강도실험과 응력의 증가 및 종방향 아칭을 고려한 손상제어실험을 수행하였다. 손상제어실험에서 얻어진 한계변형률은 일축압축강도실험에서 얻어진 한계변형률보다 다소 작게 나타났다. 이는 일축압축강도실험에서 얻은 한계변형률은 터널 굴착 시의 응력이력을 고려하여 다소 감소시켜야 한다는 것을 의미한다. 또한 대심도 터널에서 흔히 발생하는 취성파괴를 평가하기 위한 손상한계변형률을 제안하였다.

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

메탄/공기 대향류 비예혼합화염에서 $C_2HCl_3$의 영향 (The Influence of $C_2HCl_3$ on the $CH_4/Air$ Counterflow Nonpremixed Flames)

  • 이기용
    • 한국연소학회지
    • /
    • 제3권2호
    • /
    • pp.41-50
    • /
    • 1998
  • Numerical simulations of nonpremixed $CH_4/C_2HCl_3$(Trichloroethylene, TCE)/Air flames are conducted at atmospheric pressure in order to understand the effect of hydrocabon bound chlorine on methane/air flames. A chemical kinetic mechanism is employed, the adopted scheme involving 48 gas-phase species and 445 elementray reaction steps containing 223 backward reactions. The calculated temperature, velocity, and critical strain rate are compared with the experiments for the flame (16.1% TCE by Vol.) estabilished at a strain rate of $175s^{-1}$. Whereas there is overall good agreement between predictions and the measurements, it appears that the critical strain rate is higher than measured, and some areas of further refinement in the kinetic mechanism are required.

  • PDF

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

Al 6061 합금의 고온 소성변형 조건의 예측 (Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy)

  • 김성일;정태성;유연철;오수익
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF