• Title/Summary/Keyword: Critical speed

Search Result 1,486, Processing Time 0.026 seconds

A Study on the Active Balancing for High-Speed Rotors (I): Development of the Active Balancing System (고속 회전체의 능동 밸런싱에 관한 연구 (I): 능동 밸런싱 장치의 개발)

  • Kim, Jong-Soo;Park, Hyun-Kyu;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.140-146
    • /
    • 2002
  • High speed rotating machines can be very sensitive to rotating mass unbalance that is a major source of harmful vibration for many types of rotating machinery. So, the balancing procedure is needed for all high-speed rotating system. To save the time and cost of off-line balancing, many researchers have developed the on-line balancing devices and methods. In this paper, an active balancing device, which is an electro-magnetic type, is developed and the active balancing algorithm using influence coefficient method is also proposed. The active balancing experiment for flexible rotors during operation is performed by an active balancing device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.

Effect of Electric Fields on Flame Speed of Propagating Premixed Flames in Tube (전기장이 튜브내 예혼합화염 전파속도에 미치는 영향에 관한 연구)

  • Ryu, S.K.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.137-143
    • /
    • 2006
  • The effect of electric fields on flame speed has been investigated experimentally by observing propagating premixed flames in a tube for methane/air mixtures. The flame speeds were measured in both the normal and micro gravity conditions to substantiate the measurements. The results show that the flame speeds were enhanced by both the AC and DC electric fields, as the flame approached to the high voltage electrode located on the one end of the tube. The enhancement of flame speed was proportional to the square root of the electric field intensity, defined as the voltage applied divided by the distance of flame from the high voltage electrode, when the electric field intensity is sufficiently large. When the electric field intensity was low, there existed critical intensities, below which the electric fields did not influence the flame speed. This critical electric field intensity correlated well with the flame speed.

  • PDF

Speed Control of DC Motor by a Nonlinear Compensator Describing the CDIDF (CDIDF로기전된 비선형신형기에 의한 직유전동기의 속도제어)

  • Hyoung-Ki Lee;Hong-Gon Ha;Byung-Do Yoon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.2
    • /
    • pp.130-137
    • /
    • 1988
  • The technique of dual-input describing function's synthesis is introduced and the construction of a nonlinear compensator, based on this technique, is proposed. A nonlinear compensator, describing a complex DIDF depending upon amplitude of the second sinusoidal input signal only, is also proposed, where the second sinusoidal input signal is supplied to the nonlinear compensator by external generator. This compensator, connected in a closed loop of the PI speed control of DC motor, can improve the speed response in view instability limit cycle, low speed response and disturbance of the dynamic shift of the Nyquist's critical point -1 + j O. It is verified theoretically that the improvement of speed response of DC motor using the proposed compensator is achieved by means of the dynamic shift of the Nyquist's critical point on the complex plane, and the speed characterstics of DC motor is to be tested through experiment for its performance.

Stability Assessment of a Bi8h Speed Train via Optimal Design (고속전철 현가장치의 민감도해석을 통한 최적설계)

  • 탁태오;윤순형
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.542-549
    • /
    • 1999
  • The purpose of this study is to investigate stability of a high speed train and to propose optimal design using sensitivity analysis of suspension design parameters. A form of equations of motion in tangent track and curve track is obtained based on each creep force. Tangent track and curve track equations include lateral, rolling and yawing motions of wheel sets, bogies, and carbodies. Three track cases have been chosen to stability assesment of a high speed train analysis. Sensitivity equations are set up by directly differentiating the equations of motion. This study def'.led Stability performance index of a high speed train in tangent track and curve track. The relative magnitude of the effect of suspension parameters on the critical speed is computed, and by adjusting these parameters, the increase of the critical speed is achieved.

  • PDF

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.

A Study on Critical Speed Enhancement of High-speed Train Passenger Car (고속열차 객차의 임계속도 향상에 관한 연구)

  • Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.603-610
    • /
    • 2016
  • Over 12 years have passed since the first commercial operation of a Korean high-speed train. Since then, the transport capacity of the high-speed lines has become almost saturated. Therefore, studies have been carried out to increase the operating speed of the trains in order to increase their transportation capacity. This study was carried out to improve the critical speed of the KTX-Sancheon, Korean high-speed train, in order to increase its operating speed. A dynamic analysis of the KTX-Sancheon train was performed using the contact data obtained from the wheel wear profiles that were measured from a KTX-Sancheon train in commercial operation. The analysis results were verified by comparing them with the measurement acceleration data obtained from KTX-Sancheon. The suspension parameters were optimized to improve the operation speed. The critical speed of KTX-Sancheon was increased by 9.4% after the optimization by the response surface method. The optimized suspension parameters are expected to be used for the new bogie design to increase the operating speed of KTX-Sancheon from 300km/h to 350km/h.

Rotor Dynamic Analysis of the High Speed Centrifugal Chiller (고속회전용 터보냉동기의 회전체 동역학 해석)

  • 이준근;박용석
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.193-198
    • /
    • 2003
  • A rotor dynamic analysis is implemented to confirm the vibration stability of the high speed centrifugal chiller coupled with gear system. As the rotating speed of the centrifugal chiller under investigated is increased up to 17,605 rpm at the pinion rotating part, the bearing instability is getting higher and, furthermore, the rotor-bearing system might experience a few critical speed which lead to system failure due to the excessive vibration. In this study, considering the loading capacity and stability conditions, offset journal bearings are adopted for the pinion rotating system and general cylindrical bearing are used for motor part. From the modal analysis, the system is found to be stable as the synchronous rotating frequency does not come across with any whirl natural frequency and, in addition, the critical damping ratio which shows the damping characteristics of the system are positive over the all operating ranges. From these results the authors confirm the vibration stability of the rotor-bearing system suggested in this study.

  • PDF

A Study on Vibration Characteristics of Flywheel Energy Storage System Using Superconducting Magnetic Bearings (초전도자기베어링을 이용한 플라이휠 에너지 저장장치의 진동특성에 관한 연구)

  • 김종수;이수훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.170-177
    • /
    • 1998
  • The purpose of superconducting magnetic bearing flywheel energy storage system(SMB-FESS) is to store unused nighttime electricity as kinetic energy and convert it to electricity during daytime. The SMB-FESS is proposed as an efficient energy storage system because there is no mechanical problems, such as friction and wear The flywheel over SMB is rotated at a high speed, 50,000rpm. The major source of energy loss in the SMB-FESS is vibration of flywheel. Therefore, the vibration characteristics of SMB-FESS should be identified. In this study, the axial/radial stiffness and damping coefficient of SMB are measured by a vibration test. Natural frequencies and natural modes of flywheel and magnet are analyzed by a finite element method. The modal analysis of system is performed using the modal parameters of each component and the measured stiffness/damping coefficient. So, natural at frequencies and mode shapes of the joined system can be obtained. According to critical speed analysis, the system has two rigid conical modes in the low speed range. Nevertheless, the system has not been affected by the critical speed in the main operating range.

  • PDF

A new look at the restrictions on the speed and magnitude of train loads for bridge management

  • Aflatooni, Mehran;Chan, Tommy H.T.;Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.89-104
    • /
    • 2015
  • In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.