• 제목/요약/키워드: Critical span

검색결과 257건 처리시간 0.025초

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.

A state space method for coupled flutter analysis of long-span bridges

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.491-504
    • /
    • 2002
  • A state-space method is proposed to analyze the aerodynamically coupled flutter problems of long-span bridges based on the modal coordinates of structure. The theory about complex modes is applied in this paper. The general governing equation of the system is converted into a complex standard characteristic equation in a state space format, which contains only two variables. The proposed method is a single-parameter searching method about reduced velocity, and it need not choose the participating modes beforehand and has no requirement for the form of structure damping matrix. The information about variations of system characteristics with reduced velocity and wind velocity can be provided. The method is able to find automatically the lowest critical flutter velocity and give relative amplitudes, phases and energy ratios of the participating modes in the flutter motion. Moreover, the flutter analysis of Jiangyin Yangtse suspension bridge with 1385 m main span is performed. The proposed method has proved reliable in its methodology and efficient in its use.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

Study on design parameters of leaning-type arch bridges

  • Li, Ying;Xiao, Ru-Cheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.225-232
    • /
    • 2017
  • Leaning-type arch bridge is a new spatial structural system composed of two vertical arches and two leaning arches. So far there has been no contrast analysis of leaning type arch bridge with different systems. This paper focus on a parametric study of leaning type arch bridge with different systems to find the influential rules on structural forces and stability and to provide some reference for practical designs. The parametric analysis is conducted with different rise-to-span ratios and bending rigidities of arch ribs by comparing internal forces. The internal forces decline obviously with the increase of the rise-to-span ratio. The bending moments at the centers of the main arches and the leaning arches are sensitive to the bending rigidities of arch ribs. Parametric studies are also carried out with different structural systems and leaning angles of the leaning arch by comparing the static stability. The lateral stiffness of leaning-type arch bridge is less than the in-plan stiffness. Compared with the leaning-type arch bridge without thrust, the leaning-type arch bridge with thrust has a lower stability safety coefficient. The stability safety coefficient rises gradually with the increase of inclining angle of the leaning arch. This study shows that the rise-to-span ratio, bending rigidities of arch ribs, structural system and leaning angles of the leaning arch are all critical design parameters. Therefore, these parameters in unreasonable range should be avoided.

Span 20과 Tween계 계면활성제의 물/공기 계면에서의 분자면적과 계면장력 거동 (Molecular Area and Interfacial Tension Behavior of Span 20 and Tween series surfactants at water/air interface)

  • 김천희
    • 한국의류학회지
    • /
    • 제24권7호
    • /
    • pp.1065-1072
    • /
    • 2000
  • The molecular areas and the interfacial tension behavior of ten nonionic surfactants, i.e., Span 20 and Tween 20, 40, 60. 80, 21, 61, 81, 65, & 85 are tested to assay their effects on the wetting and liquid retention properties of hydrophilic and hydrophobic fibrous materials. The molecular areas at water/air interface are derived from Gibbs’adsorption equations. The following conclusions are drawn from the results: 1) Span 20 is efficient in lowering the interfacial tension and effective in adsorption at the water/air interface, resulting in the low interfacial tension at critical micelle concentration (${\gamma}$$_{CMC}$) and a small molecular area($\omega$), 2) when the hydrophiles of the surfactants are constant, $\omega$’s increase as hydrophobe carbon numbers of the surfactants increase, 3) when the hydrophobes are constant, ${\gamma}$$_{CMC}$’s and $\omega$’s increase as the hydrophile ethylene oxide units increase, indicating effectiveness and efficiency is parallel in this case, 4) the ethylene oxide unit length as a hydrophile has greater influence on u than the hydrophobe chain length.han the hydrophobe chain length.gth.

  • PDF

Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge

  • Chan, Tommy H.T.;Li, Z.X.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.655-670
    • /
    • 2004
  • This paper aims to evaluate the effect of typhoons on fatigue damage accumulation in steel decks of long-span suspension bridges. The strain-time histories at critical locations of deck sections of long-span bridges during different typhoons passing the bridge area are investigated by using on-line strain data acquired from the structural health monitoring system installed on the bridge. The fatigue damage models based on Miner's Law and Continuum Damage Mechanics (CDM) are applied to calculate the increment of fatigue damage due to the action of a typhoon. Accumulated fatigue damage during the typhoon is also calculated and compared between Miner's Law and the CDM method. It is found that for the Tsing Ma Bridge case, the stress spectrum generated by a typhoon is significantly different than that generated by normal traffic and its histogram shapes can be described approximately as a Rayleigh distribution. The influence of typhoon loading on accumulative fatigue damage is more significant than that due to normal traffic loading. The increment of fatigue damage generated by hourly stress spectrum for the maximum typhoon loading may be much greater than those for normal traffic loading. It is, therefore, concluded that it is necessary to evaluate typhoon induced fatigue damage for the purpose of accurately evaluating accumulative fatigue damage for long-span bridges located within typhoon prone regions.

Flutter performance of box girders with different wind fairings at large angles of attack

  • Tang, Haojun;Zhang, Hang;Mo, Wei;Li, Yongle
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.509-520
    • /
    • 2021
  • The streamlined box is a common type of girders for long-span suspension bridges. Spanning deep canyons, long-span bridges are frequently attacked by strong winds with large angles of attack. In this situation, the flow field around the streamlined box changes significantly, leading to reduction of the flutter performance. The wind fairings have different effects on the flutter performance. Therefore, this study examines the flutter performance of box girders with different wind fairings at large angles of attack. Computational fluid dynamics (CFD) simulations were carried out to extract the flutter derivatives, and the critical flutter state of a long-span bridge was determined. Further comparisons of the wind fairings were investigated by a rapid method which is related to the input energy by the aerodynamic force. The results show that a reasonable type of wind fairings could improve the flutter performance of long-span bridges at large angles of attack. For the torsional flutter instability, the wind fairings weaken the adverse effect of the vortex attaching to the girder, and a sharper one could achieve a better result. According to the input energies on the girder with different wind fairings, the symmetrical wind fairings are more beneficial to the flutter performance

고선양(高線量) 방사선(放射線)이 백혈구(白血球) 수명(壽命)에 미치는 영향(影響) (Effects of High Dose Irradiation on The Leukocyte Life Span)

  • 고주환;정인용;김용규
    • Journal of Radiation Protection and Research
    • /
    • 제9권2호
    • /
    • pp.67-75
    • /
    • 1984
  • As a part of studies on acute effects of high dose irradiation the present report was carried out to evaluate the changes of the leukocyte life span in the Newzealand white male rabbits by a single whole body exposure to gamma rays from $^{60}Co$ teleirradiation unit. The exposure was done in dose levels of 100, 300, 550 and 1,000 rad to each experimental group of 10 rabbits. The life span and apparent half survival time of leukocytes, and the elution rate of leukocytes in the circulating blood were measured by McMillan method using $^{51}Cr$. 1. As a critical indicator of radiation hazards of the Newzealand male rabbits, the LD 50/30 and LD 100/30 after whole body exposure was estimated as 550 and 1,000 rads respectively. 2. The life span of leukocyte in the circulation after irradiation was slightly shortened in the 100 rad irradiated group, as compared with the unirradiated control group, but markedly shortened in the 300, 550 and 1,000 rads irradiated group. 3. After irradiation, decrease of leukocyte half survival time in the circulation showed the same pattern as that of leukocytes life span. 4. As the irradiation doses increased, the elution rate of $^{51}Cr$ loss from $^{51}Cr$ tagged leukocytes in the circulation were markedly increased gradually. 5. The life span shortening of leukocytes in the circulation after irradiation seems to occure by two processes of senescence acceleration and early destruction.

  • PDF