• Title/Summary/Keyword: Critical pressure ratio

Search Result 239, Processing Time 0.029 seconds

Flow of Non-Newtonian Fluids in an Annulus with Rotation of the Inner Cylinder (안쪽축이 회전하는 환형관내 비뉴튼유체 유동 연구)

  • 김영주;우남섭;황영규
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2002
  • This experimental study concerns the characteristics of a helical flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. The pressure losses and skin friction coefficients have been measured for the fully developed flow of Non-Newtonian fluid, aqueous solution of sodium carbomethyl cellulose (CMC) and bentonite with inner cylinder rotational speed of 0~400 prm. Also, the visualization of helical flows has been performed to observe the unstable waves. The results of present study reveal the relation of the Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The pressure losses increase as the rotational speed increases, but the gradient of pressure losses decreases as the Reynolds number increases in the regime of transition and turbulence. And the increase of flow disturbance by Taylor vortex in a concentric annulus with rotating inner cylinder results in the decrease of the critical Reynolds number with the increase of skin friction coefficient.

Transitional Flow study on non-newtonian fluid in a Concentric Annulus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 비뉴튼 유체의 천이 유동 연구)

  • Kim, Young-Ju;Hwang, Young-Kyu;Kwon, Hyuk-Jung;Suh, Byung-Taek;Hwang, In-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.324-329
    • /
    • 2001
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully developed flow of $0.1\sim0.4%$ aqueous solution of sodium carbomethyl cellulose (CMC), respectively at inner cylinder rotational speed of $0\sim600rpm$. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficients due to the rotation in uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical(axial-flow) Reynolds number decrease as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of taylor vortices.

  • PDF

Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor (터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향)

  • Lee, In-Beom;Hong, Seong-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.

An Experimental Study on the Evaluation of Smear Effect Considering In-situ Conditions (현장여건을 고려한 스미어 영향 평가에 관한 실험적 연구)

  • Park, Yeong-Mog
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.85-94
    • /
    • 2012
  • Evaluation of the smear effect caused by mandrel penetration into soft ground for a vertical drain installation is very important to predict the consolidation time of soft ground improvement. 30 kinds of laboratory model tests considering in situ conditions were conducted to investigate the formation of a smear zone and the decrease of coefficient of permeability in the disturbed zone. Three types(C(clay):M(silt)=1:1, 0.5:0.5, and 0:1) of reconstituted samples were used for 3 dimensional smear zone test. An experimental study was performed focusing on length of mandrel penetration, mandrel shape and size, earth pressure, and ground condition(unit weight and grain size distributions). Laboratory test results show that the length of mandrel penetration is the most critical factor for the formation of smear zone. As a result, the ratio between diameter of the smear zone($d_s$) and that of mandrel($d_m$) at field using long mandrel becomes larger than conventional $d_s/d_m$. The ratio between $d_s$ and $d_m$ ranges from 1.89 and 2.48 with the sample at C:M=1:0. It was also found that the $d_s/d_m$ value with the round shape of the mandrel is smaller than that of diamond one. The value of $d_s/d_m$ decreased with larger mandrel size, lower unit weight, and higher earth pressure. However, higher silt content led to increase of $d_s/d_m$. The ratio between coefficient of horizontal permeability in the smear zone($k_{hs}$) and that of undisturbed zone($k_{ho}$) ranged from 0.70 to 0.85. The test results imply that factors and values affecting $k_{hs}/k_{ho}$ show similar tendency with $d_s/d_m$.

The Characteristics of Undrained Shear Strength for Normally Consolidated Decomposed Weathered Mudstone Soil (정규압밀된 재성형 이암풍화토의 비배수 전단특성)

  • 김영수;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.7-18
    • /
    • 2002
  • Generally, natural soils are affected by one-dimensional consolidation so that the behavior characteristic could be somewhat different from the isotropic consolidation specimen. But, due to experimental difficulties and the lack of equipment, the isotropic triaxial tests are mainly performed in most lab. tests. So it seems to be very effective if it is possible to predict pore water pressure and undrained shear strength in the $K_o$ state as the results of isotropic triaxial consolidation test. In this study, isotropic triaxial consolidation test and $K_o$ triaxial consolidation test were performed and we obtained parameters related to pore water pressure ratio using the Hyperbolic model. And then we predicted the behavior of pore water pressure that occurred in the $K_o$ state from the results obtained in the isotropic triaxial cosolidation test through the equation suggested by Lo(1969). It is possible to seize the validity of Lo(1969) equation. Also, considering undrained shear strength obtained from consolidation method in relation with water content, we find that consolidation method have an effect on undrained shear strength. Finally, using the Wroth(1984) equation that is based on the theory of critical state, undrained shear strength in the $K_o$ state was predicted from that of the isotropic triaxial consolidation test. The usefulness of the equation was verified by comparing the predicted value with experimental results.

Continuous Positive Airway Pressure during Bronchoalveolar Lavage in Patients with Severe Hypoxemia (심한 저산소혈증 환자에서 기관지폐포세척술 시 안면마스크를 이용한 지속성 기도양압의 유용성)

  • An, Chang Hyeok;Lim, Sung Yong;Suh, Gee Young;Park, Gye Young;Park, Jung Woong;Jeong, Seong Hwan;Lim, Si Young;Oui, Misook;Koh, Won-Jung;Chung, Man Pyo;Kim, Hojoong;Kwon, O Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • Background : A bronchoalveolar lavage(BAL) is useful in diagnosing the etiology of bilateral pulmonary infiltrations, but may worsen the oxygenation and clinical status in severely hypoxemic patients. This study assessed the safety and efficacy of the continuous positive airway pressure(CPAP) using a conventional mechanical ventilator via a face mask as a tool for maintaining the oxygenation level during BAL. Methods : Seven consecutive patients with the bilateral pulmonary infiltrates and severe hypoxemia ($PaO_2/FIO_2$ ratio ${\leq}200$ on oxygen 10 L/min via mask with reservoir bag) were enrolled. The CPAP 5-6 $cmH_2O(F_IO_2\;1.0)$ was delivered through an inflatable face mask using a conventional mechanical ventilator. The CPAP began 10 min before starting the BAL and continued for 30 min after the procedure was completed. A bronchoscope was passed through a T-adapter and advanced through the mouth. BAL was performed using the conventional method. The vital signs, pulse oxymetry values, and arterial blood gases were monitored during the study. Results : (1) Median age was 56 years(male:female=4:3). (2) The baseline $PaO_2$ was $78{\pm}16mmHg$, which increased significantly to $269{\pm}116mmHg$(p=0.018) with CPAP. After the BAL, the $PaO_2$ did not decrease significantly but returned to the baseline level after the CPAP was discontinued. The $SpO_2$ showed a similar trend with the $PaO_2$ and did not decrease to below 90 % during the duration of the study. (3) The $PaCO_2$ increased and the pH decreased significantly after the BAL but returned to the baseline level within 30 min after the BAL. (5) No complications directly related to the BAL procedure were encountered. However, intubation was necessary in 3 patients(43 %) due to the progression of the underlying diseases. Conclusion : In severe hypoxemic patients, CPAP using a face mask and conventional mechanical ventilator during a BAL might allow minimal alterations in oxygenation and prevent subsequent respiratory failure.

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • Seo Seong-Hyeon;Han Yeoung-Min;Kim Sung-Ku;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.118-122
    • /
    • 2006
  • For the development of a gas generator of a liquid rocket engine, the prediction of thermodynamic properties of combustion gas with respect to a propellant mixture ratio becomes critical. The present study focuses on the temperature measurement of exit combustion gas as a function of a mixture ratio through combustion tests of a fuel-rich gas generator propelled by Lox/Jet A-1. The measurement of combustion dynamic and static pressures allowed indirect estimation of thermodynamic properties like specific heat ratio, gas constant, and constant pressure specific heat. Comparing the results with empirical prediction through an interpolation reveals that the interpolation method calibrated using temperature results can be utilized as an effective tool for the design of a fuel-rich gas generator.

  • PDF

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

Removal of Co++ Ion in the Hollow Fiber Ultrafiltration System using Anion Surfactant Micellar Enhancement (음이온 계면활성제 미셀형성을 이용한 중공사 한외여과막 시스템에서의 코발트(Co)이온 제거)

  • Yang, Hyun-Soo;Han, Kwang-Hee;Choi, Kwang-Soon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-117
    • /
    • 1996
  • Removal of metal ions on the ultrafiltration membrane with micellar-enhanced with anion surfactants is a recently developed technique which can remove heavy metals and small molecular weight ions from wastewater with simple separation process and without a phase change. Above a certain concentration, so called the critical micelle con binding cationic cobalt ions and anionic surfactants, were removed by ultrafiltration membrane. The transmembrane pressure difference had a relatively small effect on the rejection coefficient of metal ions on the ultrafiltration membrane whereas the level of anionic surfactant-to-metal ratio (S/M) had a substantial effect.

  • PDF

Evaluation of OCR in Fine Grained Soil by Piezocone Tests (피에조콘 관입 시험에 의한 OCR 평가)

  • Lim, Beyong-Seock
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.561-568
    • /
    • 2000
  • 본 연구의 목적은 Piezocone 관입시험을 이용한 연약지반의 OCR 평가에 있어 기존의 여러 가지 해석방법들과 최근에 새롭게 제안된 방법들을 실내 모형토조에서 실측된 피에조콘 관입 실험치에 적용하여 각 해석방법들의 차이와 장단점들을 비교 분석하는데 있다. 본 연구의 연구실험방법으로는, Piezocone 관입을 위한 연약 모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Free Stress 상태의 Slurry를 45일간 압밀시킨후 Automatic Computer Control Calibration Chamber (LSU/CALCHAS; Louisiana Slate University Calibration Chamber System)에 옮긴후 다시한번 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 모형지반은 여러 가지 Boundary Condition들과 Stress Condition 그리고 Stress History등을 달리하여 총 5개의 지반을 조성하였다. 관입시험은 총 25개의 Piezocone 관입이 수행되어졌고, 그중 4개는 Standard 10 cm2 Piezocone이고, 나머지 21개는 Miniature Piezocone이 사용되었다. Piezocone 실험치들에 대한 여러 가지 OCR 해석방법 적용결과, Schmertmann방법은 5개 모형지반 모두에서 과다한 OCR평가를 보였으며, $B_{q}$ 방법은 일부모형지반에서 음의 OCR값으로 계산되어졌다. 그러나, Critical-Stale Soil Mechanics 와 Cavity Expansion 이론에 근거하여 Mayne(1991), Kurup(1993), Tumay et al (1995) 들이 제안한 OCR 평가방법들은 실험치와 잘맞는 경향을 보여주었다. 이와같은 이론 모델값들의 차이는 응력조건(Stress Condition)과 경계조건(Boundary Condition)들에 대한 각 해석방법들의 고려정도에 따른 결과로 판단된다.

  • PDF