• 제목/요약/키워드: Critical current density

검색결과 590건 처리시간 0.031초

고온초전도 테이프의 임계전류밀도 분포 해석 (Critical Current Density Distribution Analysis of HTS Tape)

  • 강준선;나완수;권영길;손명환;김석환
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2002
  • It is well known that the critical current of a HTS tape has anisotropic characteristic in magnetic field. We are interested in critical current density distribution of a HTS tape. We assumed the experimentally obtained Ic-B curves do represent the local properties of HTS tapes and calculated the critical current density distribution of HTS tapes using numerical method. Also we predicted the critical current of the tapes.

  • PDF

저온 주사 레이저 현미경(LTSLM)을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석 (Distribution Analysis of Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser Microscopy)

  • 박상국;조보람;이형철
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.17-22
    • /
    • 2010
  • Distribution of local critical temperature and current density in $YBa_2Cu_3O_{7-\delta}$ (YBCO) coated conductors was analyzed using a Low-temperature Scanning Laser Microscopy (LTSLM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of critical temperature and current density in single and multi bridges. An LTSLM system was modified for a detailed two-dimensional scan without shifting of the sample. We observed a spatial distribution of the critical temperature from the bolometric response, which arises from a focused laser beam at the sample near the superconducting transition. Also we studied the relation between the critical temperature and the current density.

저온 주사 레이저 및 홀소자 현미경을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석 (Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy)

  • 박상국;조보람;박희연;이형철
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.28-33
    • /
    • 2011
  • Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

Effect of Processing Factors on Critical Current Density in Bi2212/Ag Wires

  • Kim, Sang-Cheol;Ha, Dong-Woo;Oh, Sang-Soo;Han, Il-Yong;Ha, Hong-Soo;Sohn, Ho-Sang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1243-1244
    • /
    • 2006
  • Five kinds of double stacked 385 (55 x7) filamentary Bi2212/Ag round wires and 55 filamentary tapes with different Ag ratios (silver area/superconductor area) have been fabricated via PIT method, and the effects of Ag ratio and processing factors on critical current density were studied. The effects of the maximum temperature and average filament diameter on critical current density were also studied. The wire of 0.74 mm diameter having Ag ratio 3.7 showed critical current density of $2,218\;A/mm^2$ at 4.2 K, 0 T.

  • PDF

초기 미세조직에 따른 저온 초전도 모노선재의 임계전류밀도 분석 (Effect of the Initial Microstructure of Low Temperature Superconducting Monowire on Critical Current Density)

  • 김희락;오영석;김세종;이호원;김지훈;강성훈
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.37-43
    • /
    • 2020
  • Increasing the critical current density of superconducting wire is one of the difficult challenges in the field of superconductivity. It is well known that the higher volume fraction of uniformly dispersed α-Ti is able to enhance the critical current density of superconducting material NbTi because α-Ti serves as a flux pinning center. The volume fraction of α-Ti highly depends on the grain size of NbTi because α-Ti precipitates at the grain boundaries or triple points. For this purpose, we investigated the effect of initial microstructures of NbTi obtained from hot rolling in various temperature conditions on the critical current density. In addition, subsequent heat treatment was assigned to precipitate α-Ti and groove rolling/cold drawing was adopted to produce a wire with a diameter of about 1.0 mm. It was observed that the band structure was formed after hot rolling at 500~600℃. It was also found that the volume fraction of α-Ti after hot rolling at 500~600℃ was higher and it led to the highest critical current density.

Self Field Effect Analysis of Bi-2223 Tape-Stacked-Cable With Constant Current Density Assumption

  • Nah, Wansoo;Joo, Jinnho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권1호
    • /
    • pp.12-16
    • /
    • 2000
  • In this paper, we analyze self field effects of Bi-2223 tape-stacked cable assuming constant current density in the cross section of stacked cable. Generally, the critical current of Bi-2223 tape-stacked-cable in much less than the total summation of critical currents of each tape, which is mainly due to the self magnetic fields of the cable itself. Therefore, to predict the critical current of Bi-2223 tape-stacked-cable, we needs to analyze the self filed effects on the stacked cable as well as critical current density data(J$\_$C/) of one tape. To make it more complex, the critical current degradation of Bi-2223 tape is an-isotropic; the critical current is lower in the normal magnetic field(to the tape surface) than in the parallel field. In the paper, a novel approach to predict the critical current of a Bi-2223 tape-stacked-cable from a J$\_$C/-B curve of one tape is presented with the assumption of constant current density across the stacked cable, The approach basically includes the load analysis of the stacked tapes, and its usefulness is confirmed by the experimental data.

  • PDF

자화손실 측정값으로부터 추정한 YBCO CC의 임계전류밀도 평가 (Estimation of critical current density of a YBCO coated conductor from a measurement of magnetization loss)

  • 이세연;박상호;김우석;이지광;최경달
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권3호
    • /
    • pp.16-20
    • /
    • 2010
  • For large scale power applications of HTS conductor, it is getting more important to have a stacked HTS coated conductor with low loss and large current capacity. But it was not easy to measure some electric properties. Stabilizer free YBCO CC for striated/ stacked conductors is easily burned out during the measurement of the critical current density because it has no stabilizer and it is difficult to set-up the current lead and voltage taps because it has many pieces of YBCO CC in a conductor. Instead of direct measuring the critical current of a stacked HTS coated conductor, indirect estimation from measuring a magnetization loss of HTS coated conductor could be useful for practical estimation of the critical current. The magnetization loss of a superconductor is supposed to be affected by a full penetrating magnetic field, and it tends to show an inflection point at the full penetrating magnetic field when we generate the graph of magnetization loss vs. external magnetic field. The full penetrating magnetic field depends on the shape of the conductor and its critical current density, so we can estimate the effective critical current density from measuring the magnetization loss. In this paper, to prove the effectiveness of this indirect estimation of the critical current, we prepared several different kinds of YBCO CC(coated conductor) including a stacked conductor short samples and measured the magnetization losses and the critical currents of each sample by using linked pick up coils and direct voltage measurement with transport current respectively.

Fabrication of 6-superconducting layered HTS wire for high engineering critical current density

  • Kim, Gwantae;Ha, Hongsoo;Kim, Hosup;Oh, Sangsoo;Lee, Jaehun;Moon, Seunghyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.10-13
    • /
    • 2021
  • Recently, cable conductors composed of numerous coated conductors have been developed to transport huge current for large-scale applications, for example accelerators and fusion reactors. Various cable conductors such as CORC (Conductor on round core), Roebel Cable, and TSTC (Twisted stacked tape cable) have been designed and tested to apply for large-scale applications. But, these cable conductors cannot improve the engineering critical current density (Je) because they are made by simple stacking of coated conductors. In this study, multi-HTS (High temperature superconductor) layers on one substrate (MHOS) wire was fabricated to increase the engineering critical current density by using the exfoliation of superconducting layer from substrate and silver diffusion bonding method. By the repetition of these processes, the 10 m long 6-layer MHOS conductor was successfully fabricated without any intermediate layers like buffer or solder. 6-layer MHOS conductor exhibited a high critical current of 2,460A/12mm-w. and high engineering critical current density of 1,367A/mm2 at liquid nitrogen temperature.

전기영동 YBCO 전착 막의 현탁액 바인더 영향 (Influence of polymer binder in suspension solution for EPDed YBCO Film)

  • 소대화;이영매;박성범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 초전도 자성체
    • /
    • pp.37-40
    • /
    • 2002
  • Superconductor wire fabricated by electrophoresis showed its critical current density depended on parameters such as applied voltage and deposition time. Substrate and suspension solutions. and its properties are also important parameters. When same optimal parameter and condition was used, deposition density of superconductor film affect directly its critical current density. In this study, therefore, electrophoretic deposition technique was utilized for a densification of YBCO superconducting wire, and researches on electrophoretic suspension solutions and additive were experimentally performed for an improvement of the critical current density of fabricated electrophoretically superconducting wire. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density.

  • PDF

고온초전도마그네트 내부의 스트레인에 의한 임계전류밀도 감소 계산 (Calculation of Critical Current Density Degradation in the HTS Magnet due to Mechanical Strain)

  • 이인규;나완수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.260-263
    • /
    • 1997
  • In this paper, we describe the mechanical strain effects on the critical current density of HTS (BSCCO) pancake-type-magnet. Firstly the strain of pancake coil is calculated in terms of coil length, which is also a function of angle, and then the critical current density degradation due to strain is calculated along the coil. We assumed that the critical current density degradation pattern is same with that of $Nb_{3}Sn$. We also modelled the effects of magnetic field on the critical curent degradation, and the results are compared with those with null magnetic field.

  • PDF