• Title/Summary/Keyword: Critical current

Search Result 3,030, Processing Time 0.034 seconds

Study of Multi-Step Current Lead (다단 전류도입선 해석)

  • Moon, J.S.;Seol, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.379-384
    • /
    • 2000
  • High-Tc superconducting current leads with multi-step and continually varied cross-sectional area are studied to reduce heat leak into cryostat and material use. Assuming conduction-cooled lead the cross-sectional area is reduced along the heat flow direction according to the increase of critical current density which increases with decreasing temperature. In this study, we also analyze the multi-step cross-sectional area High-Tc current leads. The multi-st데 current leads changes the cross-sectional area to have constant safety-factor at changed section. The heat leak into cryostat, total voume, safety-factor and the temperature profiles are compared to those of the constant safety-factor current leads. The developed methods are applied to the Bi-2223 superconductor sheathed with Ag-Au alloy.

  • PDF

Characteristics of Bi-based High $T_c$ Superconducting Current Lead (Bi계 고온초전도 전류 리드의 특성)

  • 백승명;이병성;김영석;곽민환;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.73-76
    • /
    • 1999
  • We have fabricated and tested a Bi-based high temperature superconducting current lead system. Ag sheathed Bi-2223 mono-filament tapes of $I_c=8.4$ A at 77 K under self-field condition were fabricated using powder-in-tube(P1T) method. Multi-layer current leads can be made by stacking of Ag sheathed Bi-2223 mono-filament wires. The critical current of this 10-layer current lead is about 68 A. The contact resistance across the copper-current lead interface has been studied using current-voltage characteristics. At temperature below critical temperature the resistive contribution of the interface to the total contact resistance dominates. We have measured AC transport losses in a current lead at 77 K, 60 Hz by a transport method.

  • PDF

The effect of mechanical working on processing the Bi-2223/Ag tapes using PIT method

  • Oh, S.S.;Ha, D.W.;Kim, S.C.;Bae, S.W.;Kwon, Y.K.;Ryu, K.S.;Ha, H.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.276-279
    • /
    • 2000
  • When high temperature superconducting tapes is fabricated using the PIT (Powder In Tube) method, the length of HTS tapes is increased more than 500 ${\sim}$ 1,000 times of initial powder packed billet. On mechanical processing, heterogeneous properties between the ceramic superconducting core and Ag/Ag alloy sheath occur the non-uniformity deformation as like sausaging that deteriorate the critical current properties of HTS tapes. In this study, we investigated the workability of Bi-2223/Ag/Ag alloy sheath tapes fabricated by the PIT method involving a number of different mechanical processes, multi drawing and rolling. In order to obtain the high critical current density and high uniformity of Bi-2223/Ag sheath tapes, the influences of powder packing density, drawing die angle and rolling parameters were studied. We found that the roll diameter is an important variable in the rolling process, as critical current of tapes rolled using 250 mm rolls was higher than that using 150 mm rolls.

  • PDF

Electrical Characteristics of $Nb/Al-AlO_x/Nb$ Tunnel Junction fabricated with $I_c$ Values in the Range of $28 A/cm^2~ 940 A/cm^2$ ($28 A/cm^2~ 940 A/cm^2$의 임계전류밀도 범위로 제작된 $Nb/Al-AlO_x/Nb$ 터널접합의 전기적 특성)

  • 홍현권;김규태;박세일;김구현;남두우
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.4-7
    • /
    • 2002
  • Samples of $Nb/Al-AlO_x/Nb$ tunnel junction with the size of $50 ${\mu}{\textrm}{m}$ {\times} 50 ${\mu}{\textrm}{m}$$ were fabricated by using self-aligning and reactive ion etching technique In the high quality samples, the $V_m$ value (the product of the critical current and subgap resistance measured at 2 mV) was 34 mV at the critical current density of $J_c: 500 A/cm^2 and the V_g$ value (the gap voltage) was 2.8 mV. For the higher $J_c$ sample, voltage fluctuation at the gap voltage was observed. The $V_m and J_c$ values for this sample were 8 mV and 900 A/cm$^2$, respectively. Also, the relationship between critical current density $J_c$ and specific normal conductance $G_s$ of the junctions with $J_c$ in the range of 28 A/cm$^2$~940 A/cm$^2$was investigated.

Interlaboratory Comparison of Critical Current Measurements on Ag-sheathed Bi-2223 tapes (Bi-2223선재의 임계전류 측정기술 비교)

  • Lee, Kyu-Won;Han, Gi-Youl
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.99-103
    • /
    • 2001
  • We have conducted two runs of interlaboratory comparison on Ag-sheathed Bi-2223 tapes to evaluate the level of measurement techniques for the critical current measurement. Two classes of specimens were prepared for parallel and serial routings and sent to four participating laboratories. The critical currents of specimens were measured at 77 K in zero magnetic field. In the first comparison, we used twenty different Bi-2223 tapes as specimens for comparison and participating laboratories measured the specimens using their own instruments and procedures. As a result, the scattering of data on the first comparison showed -3.0% to +l2.2% for the parallel routing and -0.7% to +l5.1% for the serial routing. Major sources of these variations were attributed to different measurement techniques. Thus, the second comparison of measurement was done on the same specimens under specified measurement conditions, particularly in terms of cooling procedure and sweep rate of the test current. The variations for the second comparison were decreased -3.1% to +3.2% far the parallel routing and -1.8% to +7.7% fur the serial routing.

  • PDF

Analysis of Self Magnetic Field Effects in a Bi-2223 Stacked Superconducting Bus Bar (Bi계 고온 초전도 선재 부스바에서의 자기 자장 해석)

  • Kang, Hyoung-Ku;Nah, Wan-Soo;Joo, Jin-Ho;Yoo, Jai-Moo;Oh, Sang-Soo;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.302-304
    • /
    • 1998
  • Self magnetic field in a Bus bar usually degrades the critical current in it. Actually the total critical current of a Bus bar is not the same as the sum of total critical current of each stacked HTS tape. This is due to the self field effects in a bus bar. To reduce the degradations of critical current in a bus bar, we need to analyze the self field distributions in a bus bar. Conceptually, by rearranging the each stacked tapes, the self field effects can be minimized. In this paper, we calculate the self magnetic field distributions across a bus bar analytically, with the variations of the relative angle of the two conductors in a go-and-return pair. As a result, we suggest that the optimum relative angle exist which minimize the self field effect in a bus bar.

  • PDF

AC loss Characteristics under Critical Current Degradation of HTS Tapes (고온 초전도 tape의 임계전류 저하에 따른 교류손실 특성)

  • Kim H. J.;Cho J. W.;Kim J. H.;Sim K. D.;Kwag D. S.;Bae J. H.;Kim H. J.;Seong K. S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.29-33
    • /
    • 2005
  • Critical current$(I_c)$ degradation of High $T_c$ Superconducting(HTS) tapes and AC loss under mechanical load is one of the hottest issues in HTS development and application. Mechanical load reduces the critical current of superconducting wire, and the $I_c$ degradation affects the AC loss of the wire. We measured the $I_c$ degradation and AC loss under tension and bending of Bi-2223 tapes made by 'Powder-in-Tube' technique at 77K with self-field. Also, we have studied the frequency characteristics on self-field AC loss in multi-filamentary Bi-2223/Ag tape at 77K. The measurement results and discussions on the relationship between $I_c$ degradation and AC loss are presented.

Digital-controlled Single-phase Power-factor Correction Converter Operating in Critical Current Conduction Mode (임계전류도통모드로 동작하는 디지털제어 단상 역률개선 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2570-2578
    • /
    • 2010
  • This paper presents a digital-controlled single-phase power-factor correction (PFC) converter operating in critical current conduction mode. The proposed converter utilizes the DC-DC boost converter topology for the PFC and operates the inductor current in critical conduction mode. Because the proposed converter is controlled digitally using a micom, its control circuit is simplified and the converter operates more effectively. This paper first explains the operational principles of the proposed converter and then analyzes the converter circuit. And this paper explains the implementation method of proposed converter with a detail design example, which is divided into software and circuit design parts. Also, it is shown through the experimental results of the prototype converter by the designed circuit parameters that the proposed converter has good performance as a single-phase PFC converter.

Ac Loss Characteristics under Critical Current Degradation of HTS Tapes (고온 초전도체의 임계전류 저하에 따른 교류 손실 특성)

  • Kim, Hae-Joon;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Kwag, Dong-Soon;Kim, Hae-Jong;Seong, Ki-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.286-287
    • /
    • 2005
  • Critical current(Ic) degradation of HTS tapes and AC loss under mechanical load is one of the hottest issues in HTS development and application. Mechanical load reduces the critical current of superconducting wire, and the Ie degradation affects the AC loss of the wire. We measured the Ie degradation and AC loss under tension and bending of Bi-2223 tapes processed by "Powder-in-Tube" technique at 17K with self-field. And we have studied the frequency dependence of self-field AC loss in multi-filamentary Bi-2223/Ag tape at 77K. The measurement results and discussions on the relationship between Ic degradation and AC loss are presented.

  • PDF

Fabrication and statistical characterization of Nb SQUID sensors for multichannel SQUID system

  • Kim, B.K.;Yu, K.K.;Kim, J.M.;Kwon, H.;Lee, S.K.;Lee, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.62-66
    • /
    • 2020
  • We fabricated superconducting quantum interference devices (SQUIDs) based on Nb Josephson junctions, and characterized the key parameters of the SQUIDs. The SQUIDs are double relaxation oscillation SQUIDs (DROSs) having larger flux-to-voltage transfer coefficient than the standard DC-SQUIDs. SQUID sensors were fabricated by using Nb junction technology consisted of a DC magnetron sputtering and a conventional photolithography process. In multichannel SQUID systems for whole-head magnetoencephalography measurement with a helmet-type SQUID array, we need about 336 SQUID sensors for each system. In this paper, we fabricated a few hundred SQUID sensors, measured the critical current, flux modulation voltage and decided if each tested SQUID can be used for the multichannel systems. As the criterion for the acceptance of the sensors, we chose the critical current and amplitude of the modulation voltage to be 8 ㎂ and 80 ㎶, respectively. The average critical current of the SQUIDs was 10.58 ㎂. The typical flux noise of the SQUIDs with input coil shorted was 2 μΦ0/√Hz at white region.