• Title/Summary/Keyword: Critical Strain Energy Release Rate

Search Result 31, Processing Time 0.022 seconds

A Study on the Fracture Toughness of Glass-Carbon Hybrid Composites (유리-탄소 하이브리드 복합재료의 파괴인성에 관한 연구)

  • No, Ho-Seop;Go, Seong-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.295-305
    • /
    • 1992
  • The critical strain energy release rate and the failure mechanisms of glass-carbon epoxy resin hybrid composites are investigated in the temperature range of the ambient temperature to 8$0^{\circ}C$. The direction of laminates and the volume fraction are [(+45, -45, 0, 0) sub(2) ] sub(s), 50%, respectively. The major failure mechanisms of these composites are studied using the scanning electron microscope for the fracture surface. Results are summarized as follows: 1) The critical strain energy release rate shows a maximum at ambient temperature and it tends to decrease as temperature goes up. 2) The critical strain energy release rate increases as the content of glass increases, and especially shows dramatic increase for the high glass fiber content specimens. 3) Major failure mechanisms can be classfied such as localized shear yielding, fiber-matrix debonding, matrix micro-cracking, and fiber pull-out and/or delamination.

  • PDF

Analysis of Mixed Mode Delamination in Graphite/Epoxy Composite (흑연/에폭시 복합재료의 혼합모우드 층간분리 해석)

  • Yum, Y. J.;You, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 1996
  • DCB(pure mode I) and CLS(mixed mode) tests were performed to investigate the effect of fracture mode on the interlaminar fracture of composite laminate. Mode I critical strain energy release rate was found to be $133J/m^2$ from the DCB test and total strain energy release rate decreased from $1, 270J/m^2$ as thickness ratio(tl/t) varied from 0.333 to 0.667 from the crease from the CLS test. Crack length had no effect on the total strain energy release rate and load was almost constant during the crack growth of the specimen which had the specific thickness ratio. Crack initiated when the stress of the strap ply reached constant stress $42kgf/mm^2$ which was found to be independent of the thickness ratio.

  • PDF

A Study on Critical Strain Energy Release Rate Mode II of Chemically Treated SiC-filled Epoxy Composites (표면처리된 탄화규소강화 에폭시 복합재료의 GIIC 특성)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in crack resistance properties of SiC/epoxy composites. The surface properties of SiC were determined by acid/base values and FT-IR measurements. Also the crack resistance properties of the composites were studied in critical strain energy release rate mode II ($G_{IIC}$) measurements. As a result, the acidically treated SiC had higher acid value than that of untreated SiC or basically treated SiC. The crack resistance properties of the composites had been improved in the specimens treated by acidic solution. These results were could be attributed to the acide-base intermolecular interaction between SiC and epoxy resin, resulting in increase of the degree of adhesion at interfaces.

  • PDF

Effect of Atmospheric Plasma Treatment of Carbon Fibers on Crack Resistance of Carbon Fibers-reinforced Epoxy Composites

  • Park, Soo-Jin;Oh, Jin-Seok;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.106-110
    • /
    • 2005
  • In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor ($K_{IC}$), and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 $cm^{-1}$ and hydroxyl group (O-H) at 3450 $cm^{-1}$ were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the $O_{1S}/C_{1S}$ ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including $K_{IC}$ (critical stress intensity factor) and $G_{IIC}$ (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.

  • PDF

Analytical Study on Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet(CFS) (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리에 대한 해석적 연구)

  • Sim, Jong-Sung;Bae, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • The purpose of this study is to analyze the interface debonding of RC beams strengthened by carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated next using linear elastic fracture mechanics(LEFM) approach and the finite element method. The study includes an investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses. The numerical method is presented to obtain the value of interfacial fracture parameter such as the strain energy release rate. Based on the results of this study, it is found that the critical case occurs when the interfacial cracks occur within a short region of the flexural crack. The CFS strengthening has not an adequate factor of safety against interfacial debonding of CFS. Furthermore, for the thicknesses of the adhesive studied[1mm~3mm], it is no noticeable effect on the strain energy release rate.

A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact (저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

Mehods of Fracture Toughness and Evaluation for Interface Crack in Adhesively Bonded Joints (접착이음의 계면균열에 대한 파괴인성 및 평가방법)

  • 정남용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.220-226
    • /
    • 1998
  • In this pater, a method of strength evaluation applying fracture mechanics in adhesively bonded joints of A1/A1 materials was investigated. Various adhesively bonded joints of double-cantilever beam with a interfacial crack in its adhesive layer were prepared for the fracture toughness test of comprehensive mixed mode conditions from nearly pure mode I to mode II. The experiment of fracture toughness was carried out under various mixed mode conditions with an interfacial crack and critical energy release rate, Gc by the experimental measurements of compliances was determined. From the results, fracture toughness on mixed mode with an interfacial crack is well characterized by strain energy release rate and a method of strength evaluation by the fracture toughness in adhesively bonded joints of A1/A1 materials was discussed.

  • PDF

A Study on the Coating Cracking on a Substrate in Bending I : Theory (굽힘모드하에서의 코팅크랙킹의 분석 I : 이론)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.38-47
    • /
    • 2000
  • The coating cracking on a substrate system was analyzed using a fracture mechanics approach. Multiple cracking in the bending configuration was analyzed using a variational mechanics approach to fracture mechanics of coatin $g_strate system. The strain energy release rate on bending geometry developed permits the prediction of crack growth in the coating layer on a substrate. Also, it can be used appropriately to the characterization of multiple cracking of coating. The obtained critical strain energy release rate (in-situ fracture toughness) will be a material property of coating and it will provide a better insight into coating cracking.ng.

  • PDF

The Epoxy-metal Interphase and Its Incidence on Practical Adhesion

  • Roche, Alain Andre;Aufray, Maelenn
    • Journal of Adhesion and Interface
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Epoxy-amine liquid prepolymers are extensively applied onto metallic substrates and cured to obtain painted materials or bonded joint structures. Overall performances of such systems depend on the created interphase between the organic layer and the substrate. When epoxy-amine liquid mixtures are applied onto more or less hydrated metallic oxide layer, concomitant amine chemical sorption and hydroxide dissolution appear lending to the chelate formation. As soon as the chelate concentration is higher than the solubility product, these species crystallize as sharp needles. Moreover, intrinsic and thermal residual stresses are developed within painted or bonded systems. When residual stresses are higher than the organic layer/substrate adhesion, buckling, blistering, debonding may occur leading to a catastrophic drop of system performances. Practical adhesion can be evaluated with either ultimate parameters (Fmax or Dmax) or the critical strain energy release rate, using the three point flexure test (ISO 14679-1997). We observe that, for the same system, the ultimate load decreases while residual stresses increase when the liquid/solid time increases. Ultimate loads and residual stresses depend on the metallic surface treatment. For these systems, the critical strain energy release rate which takes into account the residual stress profile and the Young's modulus gradient remains quite constant whatever the metallic surface treatment was. These variations will be discussed and correlate to the formation mechanisms of the interphase.

  • PDF

Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method (유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성)

  • Park, Myung-Kyun;Lee, Jung-Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The notched Charpy impact test is one of the most prevalent techniques used to characterize the effect of high impulse loads on polymeric materials. In this study, a method of analysis in nylon plastic materials is suggested to evaluate the critical strain energy release rate for variation of notch angles from the Charpy impact energy measurement. Instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture properties and maximum critical load. The dynamic stress intensity factor of nylon plastic material was calculated for the ASTM Charpy specimen from the obtained maximum critical load. Also, the finite element model was developed to figure out the stress distributions for Charpy specimen with different notch angles subject to 3 point bending load which is equivalent to the load applied in the experiment.

  • PDF