• Title/Summary/Keyword: Critical Spectrum Monte Carlo Depletion

Search Result 3, Processing Time 0.018 seconds

MONTE CARLO DEPLETION UNDER LEAKAGE-CORRECTED CRITICAL SPECTRUM VIA ALBEDO SEARCH

  • Yun, Sung-Hwan;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.271-278
    • /
    • 2010
  • While the deterministic lattice physics/depletion codes use leakage-corrected critical spectrum (although approximate due to the B1 buckling search employed), Monte Carlo depletion codes currently in use do not have such a feature in spite of their heterogeneity and continuous-energy modeling capability. This paper describes an approach to Monte Carlo depletion with leakage-corrected critical spectrum derived from first principles. This is based on the concept of albedo eigenvalue treated as weight of the reflected neutron in Monte Carlo simulation.

ON SOME OUTSTANDING PROBLEMS IN NUCLEAR REACTOR ANALYSIS

  • Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.207-224
    • /
    • 2012
  • This article discusses selects of some outstanding problems in nuclear reactor analysis, with proposed approaches thereto and numerical test results, as follows: i) multi-group approximation in the transport equation, ii) homogenization based on isolated single-assembly calculation, and iii) critical spectrum in Monte Carlo depletion.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.