• Title/Summary/Keyword: Critical Spectrum

Search Result 249, Processing Time 0.024 seconds

The Hearing Ability of Coralfish Chromis notatus to Low Frequency Sound 2. The Auditory Critical Ratio and Hearing Index (저주파음에 의한 자리돔의 청각 능력 2. 청각 임계비 및 청각능력지수)

  • 이창헌;서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.314-321
    • /
    • 2000
  • In order to obtain the fundamental data on the auditory thresholds of fishes for catching method using low frequency sound, the auditory thresholds of coralfish Chromis notatus were measured in the presence of masking noise in the spectrum level range of 73~83dB re l$\mu$Pa/√Hz by heartbeat conditioning technique using pure tones coupled with a delayed electric shock. Critical ratios were about 23~41dB at measurement frequency, The critical ratio increased almost linearly with increasing frequency from 500Hz. The noise spectrum level at the start of masking was about 60~65dB. This suggests that hearing of coralfish is masked in the natural environment with the noise spectrum level above 60dB. The sound pressure level of which the signal sound of 300Hz is recognized by coralfish under the ambient noise is above 88dB and the critical ratio of them is above 23dB. The hearing index of coralfish with ambient noise was 81.

  • PDF

Cooperative Power Control Scheme for a Spectrum Sharing System

  • Ban, Tae-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.641-646
    • /
    • 2011
  • In this paper, we investigate a power control problem which is very critical in underlay-based spectrum sharing systems. Although an underlay-based spectrum sharing system is more efficient compared to an overlay-based spectrum sharing system in terms of spectral utilization, some practical problems obstruct its commercialization. One of them is a real-time-based power adaptation of secondary transmitters. In the underlay-based spectrum sharing system, it is essential to adapt secondary user's transmit power to interference channel states to secure primary users' communication. Thus, we propose a practical power control scheme for secondary transmitters. The feedback overhead of our proposed scheme is insignificant because it requires one-bit signaling, while the optimal power control scheme requires the perfect information of channel states. In addition, the proposed scheme is robust to feedback delay. We compare the performance of the optimal and proposed schemes in terms of primary user's outage probability and secondary user's throughput. Our simulation results show that the proposed scheme is almost optimal in terms of both primary user's outage probability and secondary user's throughput when the secondary user's transmit power is low. As the secondary user's transmit power increases, the primary user's outage probability of the proposed scheme is degraded compared with the optimal scheme while the secondary user's throughput still approaches that of the optimal scheme. If the feedback delay is considered, however, the proposed scheme approaches the optimal scheme in terms of both the primary user's outage probability and secondary user's throughput regardless of the secondary user's transmit power.

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Hearing Ability of Bambooleaf wrasse Pseudolabrus japonicus caught in the coast of Jeju (제주 연안에서 어획된 황놀래기의 청각 능력)

  • Choi, Chan-Moon;Park, Yong-Seok;Lee, Chang-Heon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.6
    • /
    • pp.1381-1388
    • /
    • 2013
  • In order to improve the availability of underwater sound by the fundamental data on the hearing ability, the auditory thresholds for the bambooleaf wrasse pseudolabrus japonicus were determined at 80Hz, 100Hz, 200Hz, 300Hz, 500Hz and 800Hz by heartbeat conditioning method using pure tones coupled with a delayed electric shock. The audible range of the bambooleaf wrasse extended from 80Hz to 800Hz with the best sensitivity around 100Hz and 200Hz. In addition, the auditory thresholds over 300Hz increased rapidly. The mean auditory thresholds of the bambooleaf wrasse at the test frequencies, 80Hz, 100Hz, 200Hz, 300Hz, 500Hz and 800Hz were 100dB, 95.1dB, 94.8dB, 109dB, 121dB and 125dB, respectively. Auditory critical ratios for the bambooleaf wrasse were measured using masking stimuli with the spectrum level range of about 70, 74, 78dB (0dB re $1{\mu}Pa/\sqrt{Hz}$). According to white noise level, the auditory thresholds increased as compared with thresholds in a quiet background noise. The Auditory masking by the white noise spectrum level was stared over about 60dB within 80~300Hz. Critical ratios to be measured at frequencies from 80Hz to 300Hz were minimum 33dB and maximum 39dB.

A Basic Study on Acoustic Conditioning of Fish Suitable for a Marine Ranch -1. The Sound Sensitivity of Japanese Parrot Fish Oplegnathus fasciatus- (해양목장 대상 어류의 음향순치에 관한 기초적 연구 -1. 돌돔의 청각 특성-)

  • Kim Seong Ho;Lee Chang Heon;Seo Du Ok;Kim Yong Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.563-567
    • /
    • 2002
  • Developing base data on luring fish schools into netting position by the use of underwater audible sound on japanese parrot fish Oplegnathus fasciatus found in the coastal waters of Jeju Island, S. Korea. Auditory threshold was determined by the heartbeat condition technique using pure tones coupled with a delayed electric shock. The audible range of japanese parrot fish extended from 80 Hz to 500 Hz with a peak sensitivity at 200 Hz. The mean auditory thresholds at the frequencies of 80 Hz, 100 Hz, 200 Hz,300 Hz and 500 Hz were 104 dB, 95 dB, 91 dB, 99 dB and 113 dB, respectively. As the frequency became higher than 200 Hz, the auditory threshold increased almost linearly with increasing frequency. Critical ratios of fishes measured in the presence of masking noise in the spectrum level range of 69$\~$78 dB (0 dB re 1$\mu$Pa/$\sqrt{Hz}$) ranged from 21 dB to 40 dB at test frequencies. The noise spectrum level at the start of masking was about 70 dB within the test frequency range. The sound pressure level of 100$\~$200 Hz recognized by japanese parrot fish under the ambient noise is above 91 dB and the critical ratio for them is above 21 dB.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

Study on the Spectrum Sharing between IMT and FSS Systems Considering MIMO SDMA Interference Mitigation Technique in C Band (C 대역에서 MIMO SDMA 간섭경감기법을 고려한 IMT와 FSS 시스템간 주파수 공유 연구)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.587-595
    • /
    • 2010
  • Spectrum sharing between wireless systems becomes a critical issue clue to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis which means that harmful. interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, I propose the minimum separation distances as a sharing criterion of I/N=-10dB using the interference to noise ratio(I/N) received at the reference FSS earth station from IMT multiple base station. Especially, same results imply that I/N values can be greatly reduced with MMO SDMA interference mitigation technique of IMT base station so that FSS and IMT systems can co-exist in the sam e frequency with appropriate separation distance.

Spectrum Sharing between IMT-Advanced System Based on MIMO SDMA Techniques and FWA System (MIMO SDMA에 기반한 IMT-Advanced 시스템과 FWA 시스템간의 주파수 공유)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.808-816
    • /
    • 2010
  • Spectrum sharing between wireless systems becomes a critical issue due to emerging new technologies and spectrum shortage. Since WRC-07 allocated 3400-3600MHz band for the coming fourth generation (4G) or IMT-Advanced on a co-primary basis along with existing Fixed Wireless Access (FWA), it requires spectrum sharing studies to solve the interference problems between two systems. In this paper, I propose the separation distance between service coverages as a sharing fundamental criterion based on the interference to noise power ratio (I/N) received in a FWA base station from several IMT-Advanced base stations on the cellular systems. Especially, some results imply that I/N values compared to the worst case can be greatly reduced with MIMO SDMA interference mitigation technique of IMT-Advanced base stations so that these two systems can co-exist in the same frequency with appropriate separation distance.

Dielectric Function Analysis of Cubic CdSe Using Parametric Semiconductor Model (변수화 반도체 모델을 이용한 Cubic Zinc-blonde CdSe의 유전함수 분석)

  • Jung, Y.W.;Ghong, T.H.;Lee, S.Y.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • ZnCdSe alloy semiconductor was widely used for the optoelectronic device. And CdSe is the end-point in this material. In this work, we measured the dielectric function spectrum of cubic CdSe with Vacuum Ultra Violet spectroscopic ellipsometry and analysed this data with parametric model. As a result, we observed some of transition energy point over 6 eV and obtained the database for dielectric function spectrum, which could be used for temperature or alloy composition dependence study on optical property of CdSe.