• 제목/요약/키워드: Critical Load

검색결과 1,591건 처리시간 0.032초

V-notched elements under mode II loading conditions

  • Sapora, Alberto;Cornetti, Pietro;Carpinteri, Alberto
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.499-508
    • /
    • 2014
  • We apply the Finite Fracture Mechanics criterion to address the problem of a V-notched structure subjected to mode II loading, i.e., we provide a way to determine the direction and the load at which a crack propagates from the notch tip and express the critical conditions in terms of the generalized stress intensity factor. Weight functions for V-notch emanated cracks available in the literature allow us to implement the fracture criterion proposed in an almost completely analytical manner: the determination of the critical load and the direction of crack growth is reduced to a stationary point problem. A comparison with experimental data presented in the Literature concludes the paper.

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad;Daman, Mohsen;Fardshad, Ramin Ebrahimi
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution

  • Ghasemabadian, M.A.;Saidi, A.R.
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.675-693
    • /
    • 2017
  • In this paper, based on the first-order shear deformation plate theory, buckling analysis of piezoelectric coupled transversely isotropic rectangular plates is investigated. By assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for buckling analysis of plate with surface bonded piezoelectric layers are established. The Maxwell's equation and all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. The analytical solution is obtained for Levy type of boundary conditions. The accurate buckling load of laminated plate is presented for both open and closed circuit conditions. From the numerical results it is found that, the critical buckling load for open circuit is more than that of closed circuit in all boundary and loading conditions. Furthermore, the critical buckling loads and the buckling mode number increase by increasing the thickness of piezoelectric layers for both open and closed circuit conditions.

온도 상승에 따른 압축강재의 좌굴 및 한계 판폭두께비 (Buckling and Limit Width-Thickness Ratios of Steel Columns under Compression at Elevated Temperatures)

  • 강성덕;김재억;최현식
    • 한국공간구조학회논문집
    • /
    • 제12권3호
    • /
    • pp.55-62
    • /
    • 2012
  • 본 연구는 온도 증가에 따른 압축을 받는 H형 강재의 플랜지와 웨브의 국부 및 전체좌굴응력 내화해석 프로그램 개발과 플랜지와 웨브가 항복파괴전에 국부좌굴이 일어나지 않을 한계 판폭두께비의 상관값을 구하는 프로그램을 개발하는 것이다. 고온에서의 강재의 응력-변형도 관계식은 EC3:Part 1.2를 근거로 하였으며, 비교, 검토를 위하여 영국 BS5950의 강재를 대상으로 온도 증가에 따른 압축을 받는 강재의 플랜지와 웨브의 파괴온도와 하중을 본 연구의 내화해석 프로그램으로 예측하였다. 본 연구는 좌굴 및 항복에 대한 내화해석 프로그램을 개발하는 것을 목적으로 하고 적용 예를 통하여 좌굴 및 한계 판폭두께비를 분석하고 개발 프로그램의 타당성을 검토하였다.

Allocation Model of Container Yard for Effectiveness of ATC Work in Automated Container Terminal

  • Kim, Hwan-Seong;Lee, Sang-Hun;You, Myong-Suk;Kwak, Kyu-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.74.1-74
    • /
    • 2001
  • In this paper, we deal with an allocation model of vertical type container yard for minimizing the total ATC work time and the equivalence of ATC work´s load in each block on automated container terminal. Firstly, a layout of automated container terminal yard is shown. The characteristic of equipment which is operated in the terminal and basic assumption are given. Next, an allocation model which concerns with minimizing the total work time and the equivalence of work´s load is proposed for the effectiveness of ATC work in automated container terminal. Also, a weight values on critical function are suggested to adjust the critical values by evaluating the obtained allocation plan. To find the solution of allocation model in given terminal yard situation, a GA is applied, where the real information of container is used ...

  • PDF

Structural design and evaluation of a 3MW class wind turbine blade

  • Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.154-161
    • /
    • 2014
  • This research presents results of structural designs and evaluations for 3MW Wind Turbine Blade by FEM analysis. After the GFRP model was designed as a baseline model, failure check by Puck's failure criterion and buckling analysis were accomplished to verify safety of wind turbine blade in the critical design load case. Moreover, applicability of two kinds of carbon spar cap model, was studied by comparing total mass, price and tip deflection to the GFRP model. The results showed that the GFRP model had sufficient structural integrity in the critical design load case, and the carbon spar cap model could be a reasonable solution to reduce weights, tip deflections.

소용량 EHD 발전에 관한 실험적 연구 (An Experimental Study on the Small Capacity EHD Power Generation)

  • 전춘생;이재복;임응춘
    • 태양에너지
    • /
    • 제9권2호
    • /
    • pp.58-68
    • /
    • 1989
  • This paper describes an experimental study that was performed to determine the limiting factors on the power output in the closed cycle Electro-Hydro-Dynamic generator of small capacity. A corona discharge for producing unipolar charged particles used as the charging method. The experiment demonstrated that the corona method of charging was an efficient and effective means of producing unipolar charged particles. Four factors having an effect on the power output characteristics of EHD generator are discussed and examined experimentally, using methyl alcohol and kerosene as working fluides; a. The conversion length between attractor and collector. b. The corona current of Emitter. c. The flow velocity of working fluids. d. Load resistance. This results are as follows; 1) There in a critical value in conversion length for its maximum power output. 2) Power output increases almost linearly with corona current and flow velocity. 3) There is the critical value of load resistance producing a maximum power output. 4) Kerosene is known better working fluid than Methyl alcohol in this EHD generator.

  • PDF

AE에 의한 SK-5강의 파괴기구 구명 (On Fracture Mechanism of SK-5 Steel by AE Method)

  • 김상철;이억섭;함경춘;오범석
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.130-139
    • /
    • 1990
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, crack geometry and mechanical properties. It seems to be very important to investighate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their integrity. In this experimental research, fracture behaviors of SK-5 high carbon steel was investigated by using Acoustic Emission(AE) technique. Fracturing processes of materials were estimated through both the tension test with nominal specimens and the fracture test with compact tension specimens. The critical applied load which corresponds to the crack initiation and propagation is very improtant for the determination of yield strength of fracture toughness. The critical applied load($P_Q$) was determined through AE method and the source of AE signal was estimated by fractography analysis. The experimental results may contribute to the safety analyses and strength evaluation of structures.

  • PDF

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF

컴프레서용 Al-Si 합금의 파괴 및 마모 특성 (Fracture and Wear Characteristics of Al-Si alloy used for Compressor)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • 제15권2호
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.