• Title/Summary/Keyword: Critical Gap Height

Search Result 14, Processing Time 0.021 seconds

Investigation on the Flowfield Around a Square Cylinder near a Wall (지면에 근접한 정사각주 주변의 유동장 연구)

  • Hwang, Jae-Ho;Park, Young-Whe;Kim, Tae-Yun;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.754-759
    • /
    • 2001
  • This paper presents unsteady computational investigations and wind tunnel tests on the flow field around a square cylinder with a gap between the body and the ground plane. Two-dimensional unsteady, incompressible Navier-Stokes codes are developed for the computation of the viscous turbulent flows. By computing the flow around a square cylinder without ground effect, three two-equation turbulence models are evaluated and the developed code is validated. The results show a good agreement with experimental values and other computational results. Critical gap height at which the formation of Karman vortex streets is interrupted, is demonstrated and another transition regime is pointed out

  • PDF

A COMPUTATIONAL STUDY ABOUT THE ASYMMETRIC AERODYNAMIC EVOLUTION AROUND A CIRCULAR CYLINDER CAUSED BY A MOVING WALL (이동 벽면에 의한 원형 실린더의 비대칭적 공력 발달에 관한 전산연구)

  • Jung J.Y.;Chang J.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.64-70
    • /
    • 2006
  • A Computational study was carried out in order to investigate the moving wall effect of a circular cylinder at a Reynolds number of $2.0{\times}10^4$. The viscous-incompressible Navier-Stokes equations and Spalart-Almaras turbulent model of the commercial CFD code were adopted for this numerical analysis. The moving wall was set parallel with the freestream, and moving speed was equal to the freestream velocity. The gap ratio is defined as the distance ratio between the circular cylinder diameter and the height from the moving wall. The results show that there is vortex shedding over the critical gap ratio and aerodynamic loads including amplitude and the Strouhal number change according to the gap ratio.

A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder (타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구)

  • Choe, Jae-Ho;Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

COMPARISON OF DRYOUT POWER DATA BETWEEN CANFLEX MK-V AND CANFLEX MK-IV BUNDLE STRINGS IN UNCREPT AND CREPT CHANNELS

  • JUN JI SU;LEUNG L.K.H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.565-574
    • /
    • 2005
  • The CANFLEX Mk-V bundle is designed to improve upon the critical heat flux (CHF) characteristics of the CANFLEX Mk-IV bundle. The main difference between these two bundles is an increase in bearing pad height of about 0.3 mm in the CANFLEX Mk-IV bundle. This change in bearing pad height leads to an increase in gap flow at the bottom of the bundle, primarily eliminating the localized narrow-gap effect that limits the CHF of the CANFLEX Mk-IV bundle. The objective of this paper is to examine the effects of bearing pad height and pressure tube creep on the sheath-temperature distribution, dryout power, and dryout location, as observed ken full-scale bundle tests, between CANFLEX Mk-IV and Mk-V bundles In uncrept and crept channels. A comparison of surface-temperature differences between the top and bottom elements of the bundles showed that increasing the bearing pad height has led to a more homogeneous enthalpy distribution in subchannels of the bundle. Initial dryout locations of the CANFLEX Mk-V bundle were mainly observed at the mid-spacer plane of either the $10^{th}$ (about $80\%$) or $11^{th}$ ($20\%$) bundle in the 12-bundle string, as compared to the mid-spacer and downstream-button planes for the CANFLEX Mk-IV bundle. Dryout power and boiling-length-average (BLA) CHF values exhibit consistent trends and little scatter with varying flow conditions for both types of CANFLEX bundles in uncrept and crept channels. An increase in pressure tube creep has led to a reduction in dryout power (about $20\%$ far the $3.3\%$ crept channel and $27\%$ for the $5.1\%$ crept channel as compared to dryout powers for the uncrept channel). Increasing the bearing pad height of the CANFLEX bundle has led to an increase in the dryout power. Overall, the dryout power of the CANFLEX Mk-V bundle is 7 to $10\%$ higher than that of the CANFLEX Mk-IV bundle at the inlet temperature range of interest (i.e., between 243 and $290^{\circ}C$).

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Hydraulic Model Experimental Study on the Rope Kink Phenomena and Mooring Block Behavior under Wave Conditions at a Seaweed Farm (연승 수하식 양식시설의 파랑 중 해조류 꼬임 현상 및 계류용 블록 이동에 관한 수리모형 실험적 연구)

  • Kim, Heon-Tae;Choi, Jin-Hyu;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • In this study, a hydraulic model experiment under wave conditions was carried out to investigate the gap/distance between two near-unit farm lines that affects the rope kink and shape variation of a seaweed farm during mooring block movement. As a result, rope kink occurred during the low wave height condition as the gap/distance between the two near-unit farm lines decreased. The seaweed farm maintained a stable shape in the higher wave height conditions as the gap/distance between the two near-unit farm lines increased. This result indicates that rope kink is sensitively affected by the gap/distance between the two near-unit farm lines. A tendency to increase the critical wave height was observed when mooring block movement occurred, and as the mooring block weight and wave period increased. From the experimental results in which incident wave conditions and the mooring block weight changed, as the front side mooring block weight increased from 3.0 to 8.0 tons, the seaweed farm was stable, and rear side mooring block movement hardly occurred. The observed tension of the seaside mooring line was a maximum at about 3.0 ton/m.

A Study on the Experimental Evaluation of the Forming Limit and Deep-Drawability of Sheet Metals (금속판재의 성형한계 및 디프드로잉 성형성의 실험적 평가에 관한 연구)

  • Rim, Jae-Kyu;Lee, Sang-Ho;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.67-74
    • /
    • 1999
  • The mechanical properties including forming limit and deep-drawability of commercially-used sheet metals were experimentally estimated in this study. Uniaxial tensile test to obtain basic mechanical properties was carried out, followed by limiting dome height (LDH) test and forming limit diagram (FLD) test to quantitatively evaluate the sheet-formability. Deep drawing and reverse drawing tests were also performed to find out the critical values of the blank holding force and the gap between the die and the blank holder which enabled the deep drawing and reverse drawing of a successful cop without any wrinkle or fracture. The thickness of the cup wall along the rolling-, transeverse- and $45^{\circ}$-directions was measured and compared with one another. And the punch force-stroke curve and the critical punch force expected from the theory coincided with the experimental result very well for mild steel while not for aluminium alloy.

  • PDF

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.

A new equation based on PGA to provide sufficient separation distance between two irregular buildings in plan

  • Loghmani, Adel;Mortezaei, Alireza;Hemmati, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.543-553
    • /
    • 2020
  • Past earthquakes experience shows that serious damage or collapse of buildings have dramatically accrued when sufficient separation distance has not been provided between two adjacent structures. The majority of past studies related to the pounding topic indicate that obtaining the gap size between two buildings is able to prevent collision and impact hazards during seismic excitations. Considering minimization of building collisions, some relationships have been suggested to determine the separation distance between adjacent buildings. Commonly, peak lateral displacement, fundamental period and natural damping as well as structural height of two adjacent buildings are numerically considered to determine the critical distance. Hence, the aim of present study is to focus on all mentioned parameters and also utilizing the main characteristic of earthquake record i.e. PGA to examine the lateral displacement of irregular structures close to each other and also estimate the sufficient separation distance between them. Increasing and decreasing the separation distance is inherently caused economical problems due to the land ownership from a legal perspective and pounding hazard as well. Therefore, a new equation is proposed to determine the optimum critical distance. The accuracy of the proposed formula is validated by different models and various earthquake records.